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ABSTRACT

Cdots are carbon-based nanoparticles and luminescent materials that are safe for
humans and the environment, and also have many potential applications. Natural
precursors using local plants can be utilized, and a green synthesis approach can be
used to fabricate Cdots that are advantageous in terms of sustainability, availability,
low cost, and minimal toxic waste. In this study, the hydrothermal method was chosen
because the process is simple, does not require a catalyst, and is suitable for natural
materials. The fabricated Cdots from various plant-based extract precursors using the
hydrothermal method are investigated for the chemical and optical property changes
that occur during the conversion of natural extracts into Cdots. Fourier-transform
infrared (FTIR) spectra show that functional groups such as O—H and C=C remain
present after the Cdots synthesis process. The UV-Vis spectra show a shift in
the absorption band, indicating the formation of sp? aromatic domains and 7—7*
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transition in the Cdots structure, compared to plant-based extracts. Field emission scanning electron microscope (FE SEM) images show that the
fabricated Cdots have a size of about (57 &= 12) nm. These results show great potential of local plants as a base material for producing Cdots that

can be beneficial for various applications.
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1. INTRODUCTION

The demand for environmentally friendly luminescent ma-
terials continues to increase, in line with the development of
technologies that require alternatives to heavy metal-based
compounds [1, 2]. Heavy metal-based quantum dots, such as
cadmium-based materials, although known for their excellent
optical performance, are also associated with toxicity [3-5],
high production cost [6], and environmental hazards [7], thus
limiting their wider applications. This is driving the explo-
ration of new materials that are not only optically efficient
but also safe for humans and the environment.

A promising alternative material is carbon dots (Cdots).
Cdots are carbon-based nanoparticles with extremely small
sizes [8]. Cdots exhibit unique fluorescent properties [9],
high stability [10], as well as good biocompatibility and low
toxicity [11]. Compared to conventional carbon materials,
Cdots have an advantage due to the quantum confinement
effect [12, 13], a physical phenomenon that enables bright flu-
orescence emission even in complex environments [9]. These
characteristics make Cdots highly promising for various ap-
plications, including biosensing [8], bioimaging [14], heavy
metal ion detection [15], catalysis [16], and applications in the
energy and environmental fields [17].

The development of Cdots has also aligned with the in-
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creasing adoption of green synthesis strategies. This approach
emphasizes the use of plant-based extracts as a source of
carbon, which are renewable [18], easily obtainable [19], low-
cost [20], and produce less waste compared to synthetic chem-
icals [21]. These natural sources are not only abundant and
cost-effective, but also often contain bioactive compounds
such as flavonoids [16], phenols [22], and alkaloids [17, 23],
which may contribute to enhanced chemical and optical prop-
erties of the fabricated Cdots. This study has specifically
compared seven types of natural materials with different
phytochemical characteristics, unlike previous studies that
generally used only one type of natural material. This ap-
proach provides a comprehensive overview of the effect of
precursor chemical composition on the formation of sp? do-
mains and the optical properties of Cdots. Thus, this study
focuses not only on environmentally friendly synthesis but
also on understanding the relationship between the type of
natural material and the optical performance of the fabricated
Cdots.

Several methods have been developed for the synthesis
of Cdots. There are two primary approaches to synthesizing
Cdots: top-down and bottom-up. Top-down approaches,
such as laser ablation [24, 25] and electrochemical oxida-
tion [26], often require sophisticated equipment, high energy
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consumption, complex procedures, and, in several cases, haz-
ardous chemicals [27, 28]. In contrast, bottom-up approaches,
such as solvothermal, hydrothermal, and microwave-assisted
synthesis [29-31], have emerged as simpler, more economi-
cal, and environmentally friendly options. For example, the
hydrothermal method has been proven to be efficient [16],
cost-effective [32], and environmentally friendly [32, 33]. This
method allows for the conversion of natural precursors into
Cdots under mild conditions, without the need for catalysts
or harsh reagents, and has been shown to produce Cdots with
good stability and fluorescence performance [17, 34].

In this study, Cdots were synthesized from various plant-
based extracts using the hydrothermal method. The primary
objective is to investigate the chemical and optical property
changes that occur during the conversion of natural extracts
into Cdots. Characterization was conducted using Fourier-
transform infrared (FTIR) spectroscopy to identify the trans-
formation of functional groups, UV-Vis spectrophotometry
to observe the absorbance features associated with Cdots for-
mation, and a field emission scanning electron microscope
(FE SEM) to observe the size distribution of fabricated Cdots.
This work highlights the potential of simple, green hydrother-
mal synthesis using natural precursors to produce functional
carbon nanomaterials.

2. MATERIALS AND METHODS

2.1 Materials

Plant-based extract powders, including Clitoria ternatea, Cur-
cuma longa, Annona muricata L., Allium sativum, Moringa
oleifera L., Psidium guajava L., and Zingiber officinale, were
obtained from Bigfood Production, Indonesia. Aquadest was
purchased from Jaya Santosa, Indonesia. Filters with a size of
0.22 pm and 2.5 pm were products from Microlab Scientific,
China, and Whatman, United Kingdom, respectively. Fourier-
transform infrared spectroscopy (FTIR, 8201 PC, Shimadzu)
and ultraviolet—visible spectroscopy (UV-Vis, Spectropho-
tometer UV-1900, Shimadzu) were used to characterize the
fabricated samples.

2.2 Cdots fabrication process

Cdots were synthesized using a bottom-up hydrothermal
method with plant-based extract powders serving as carbon
precursors. A total of 2 grams of each selected plant-based
extract powder was accurately weighed and dispersed into
20 mL of aquadest. The mixture was stirred at 500 rpm for
30 minutes to ensure a homogeneous suspension. The sus-
pension was then transferred into a PTFE-lined Teflon vessel
and sealed within a stainless steel autoclave reactor. The
sealed reactor was placed in a laboratory furnace and heated
at 180 °C for 3 hours to initiate hydrothermal carbonization.
During this stage, the high-temperature and high-pressure
aqueous environment promotes the breakdown of complex
biomolecules and the formation of carbonaceous nanoparti-
cles. After the reaction, the autoclave was allowed to cool
naturally to room temperature.

The product obtained from the hydrothermal process
was a brownish colloidal suspension accompanied by black
solid residues, indicating the partial conversion of organic
material into carbon nanoparticles. Initial purification was
carried out by filtering the suspension using a 2.5 um filter
paper to separate the larger aggregates and residual solids.
The resulting filtrate was then subjected to centrifugation
at 10,000 rpm for 5 minutes to further remove suspended
particles. The supernatant obtained was subsequently passed
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Table 1. List of sample types and corresponding solution
labels used for characterization.

Sample type Solution sample in- Sample label
formation
Clitoria ternatea CT
Curcuma longa CL
Plant-based Annona muricata L. AM
extract Allium sativum AS
solution Moringa oleifera L. MO
Psidium guajava L. PG
Zingiber officinale Z0
Clitoria ternatea CTc
Curcuma longa CLc
Cdots Ani?ona m%tricata L. AMc
solution Allzu.m satioum ASc
Moringa oleifera L. MOc
Psidium guajava L. PGc
Zingiber officinale Z0Oc

through a 0.22 um syringe filter to isolate fine-sized carbon
dots and eliminate any remaining particulate contaminants.
The final Cdots solution was stored in a clean container and
kept at a temperature of 10 °C for further characterization.

For FTIR testing, the plant-based extract and Cdots solu-
tion were tested as-is. Meanwhile, for UV-Vis analysis, the
solution was diluted at a ratio of 1:40 with aquadest to facili-
tate observation. For FE SEM imaging, the sample was dried
at 60 °C for 30 minutes. The fabrication process of the Cdots
solution is shown in Figure 1, while the obtained solutions
for characterization are listed in Table 1.

3. RESULTS AND DISCUSSION

3.1 Chemical and morphological characterization
Figure 2a presents the FTIR spectrum of the plant-based ex-
tract solution before the hydrothermal process. The spec-
trum shows a broad transmittance band in the range of 3220-
3380 cm ™!, centered at approximately 3330 cm~! for each ex-
tract solution. This peak indicates the presence of O-H stretch-
ing vibrations, a characteristic feature of hydroxyl groups
typically present in polyphenols, flavonoids, and other plant-
derived compounds [35, 36]. This band suggests the abun-
dance of hydrogen-bonded hydroxyl groups in the natural
precursor. In addition, a sharp peak around 1635 cm™! is
observed, indicating C=C stretching vibrations from aromatic
structures or unsaturated carbon frameworks, which are also
commonly found in phytochemicals [37]. On the other hand,
Figure ?b shows the FTIR spectrum of the resulting Cdots so-
lutions after the hydrothermal process. Notably, the spectrum
exhibits similar transmittance features, particularly the broad
O-H stretching peak near 3331 cm~! and the C=C stretching
peak around 1635 cm™ !, both of which are clearly visible. The
absence of significant peak shifts or new bands suggests that
the hydrothermal process did not drastically influence the
primary functional groups present in the original extract.
The spectral similarity between the precursor solution
and the Cdots solution could be twofold. First, it suggests that
the carbonization process may have occurred through mild
dehydration and condensation reactions, which are sufficient
to induce the nucleation of carbonized domains without total
degradation of the original biomolecules [38, 39]. Secondly, it
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Figure 1. Fabrication process of Cdots from plant-based extract powder.

suggests that certain bioactive groups, such as phenolic -OH
groups and conjugated C=C structures, remain partially re-
tained on the surface of Cdots, possibly as surface-anchoring
ligands [38, 39].

The unchanged functional groups on the fabricated Cdots
solutions are potentially beneficial. Hydroxyl and aromatic
groups on the surface of Cdots can improve dispersibility in
water, provide reactive sites for further functionalization, and
contribute to antioxidant or antimicrobial properties [40-42].
In addition, such surface chemistry is particularly advanta-
geous for biological applications, where interactions with
proteins or cell membranes often rely on hydrogen bonding
or 71—7T interactions [43]. Although the FTIR spectra do not
show drastic transformations, the consistency of the peaks
supports the hypothesis that hydrothermal synthesis induces
nanostructures and partial carbonization, rather than full de-
composition of precursor molecules.

Figure 2c shows the morphological measurement results
of the evaporated CLc sample at 60 °C on an aluminum foil
using FE-SEM. The CLc morphology shows a relatively ho-
mogeneous surface without any indication of aggregation,
with an average particle size of (57.4 £ 12.3) nm. This size in-
dicates that the hydrothermal process successfully converted
the precursor into nano-scale particles, supporting the suc-
cessful fabrication of Cdots. Surface element analysis showed
that carbon (C) and oxygen (O) atoms dominated with per-
centages of (50.57 £ 0.37)% and (43.91 + 0.59) %, respectively,
in line with FTIR results confirming the presence of O-H and
C=C groups on the Cdots surface.

3.2 UV-Vis measurement

The UV-Vis spectra of plant-based extract solutions (i.e., CT,
CL, AM, AS, MO, PG, and ZO) before hydrothermal process-
ing are displayed in Figure 3a. Absorption peaks in the range
of 254-279 nm were observed in several extract solutions,
including CT, AM, AS, and MO, indicating the presence of
the 77—7r* transition of aromatic sp? groups [44]. This transi-
tion is usually associated with phenolic structures or other
aromatic compounds commonly found in plant extracts. In
CT, two small peaks around 574 nm and 619 nm were also
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observed, which refer to the spectrum of anthocyanins [45],
natural pigment compounds commonly found in blue or pur-
ple flowers. According to a previous study, a small peak in
the PG spectrum at about 309 nm suggested the presence of
flavonoids [46]. The lack of chromophores in CL and ZO,
on the other hand, may have contributed to their inability to
display a distinct absorption peak.

After the hydrothermal process, the resulting Cdots so-
lutions showed significant changes in the UV-Vis spectra,
as displayed in Figure 3b. All samples exhibit a characteris-
tic absorbance peak around 279-283 nm, which is indicative
of the r—7t* transition of aromatic sp2 domains [47]. This
distinct peak, differing from the original extract spectra, sug-
gests that a transformation of chemical structure occurred
during the synthesis. The shift in peak shape and intensity
provides early evidence that the Cdots fabrication process
was successful.

The absorption peaks in the Cdots samples are more in-
tense and sharper than those in the extracts, implying that
partial carbonization during the hydrothermal process led to
the formation of extended 7r-conjugated systems and larger
sp? domains. This reorganization enhances the optical char-
acteristics and absorbance of the Cdots [48, 49]. In addition
to confirming Cdots formation, a qualitative comparison of
various plant precursors was conducted. Among all samples,
CLc showed the most prominent absorption peak in the 279—
283 nm range. This strong peak correlates with blue-green
luminescence under. In addition, the appearance of a peak
at 218 nm in the CLc sample indicates the possible presence
of aliphatic carbon chains or short groups resulting from par-
tial decomposition [16, 50]. These peaks also support the
FTIR spectra that show the presence of C=C and O-H groups,
which may remain on the surface of Cdots.

Overall, the shift in the UV-Vis spectra between the Cdots
solution and the plant-based extract solution provides com-
pelling evidence that the hydrothermal synthesis method
used in this work creates new structures with unique optical
properties distinct from the original material. As documented
in previous studies, Cdots are also a promising option for op-
toelectronic, fluorophore, and photoconductor applications

& 10.62755/greensusmater.2025.2.2.49-54 | Page 51


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.62755/greensusmater.2025.2.2.49-54

Fatah Ari Kusuma Wardana et.al.

Greensusmater, 2 (2025) 49-54

a s O-H - =€ b O-H - c=C CA 30 Particle size : (57.4 £12.3) nm
_ N ) — ~ e . ﬂ\ |~ — ~\/ e 3
T ST Vv—
P s . Sa (o}
(o] @ .
e \/ﬁ-\/—\ Q W T 20
- —_— — ——— ©
g B TN g ~B i e, ‘E-
k= = s)
c W c _\_/—1—_\/—\ g 10
© ®©
© W e W €
— = =}
—20 ——MO0 AM  ——CT —Z0c¢ AMc CTe b=
PGEl——AS ——CL — PGe Clc 0
4000 3000 2000 1000 4000 3000 2000 1000 40 60 80 100

Wavenumber (cm™)

Wavenumber (cm™)

Particle size (nm)

Figure 2. (a) FTIR spectra of plant-based extract solution as base material for producing Cdots. (b) FTIR spectra of the fabricated
Cdots solution. (c) Particle size distribution measurement and SEM image of the CLc sample.
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Figure 3. (a) UV-Vis spectra of plant-based extract solutions. (b) UV-Vis spectra of the fabricated Cdots solutions. (c) CLc
luminescence photograph in a UV box.

due to the increase in 7r-conjugation and reorganization of
the aromatic structure [51].

The result of the liquid CLc sample photograph inside a
UV box is shown in Figure 3c. It can be seen that the sample
emits a blue-green luminescence when exposed to UV light.
This phenomenon indicates that the CL sample, having un-
dergone hydrothermal processing, has successfully formed
luminescent material—one of the characteristic features of
Cdots.

4. CONCLUSION

This study successfully synthesized Cdots from various plant
extract powders through the hydrothermal method using a
green synthesis approach. Characterization results show that
the Cdots formed retain the main active functional groups,
such as O-H and C=C, as confirmed through FTIR spectra.
In addition, UV-Vis analysis revealed changes in the optical
absorption pattern in the range of 279-283 nm, which is typi-
cal for the aromatic sp? domain, indicating the formation of
conjugated carbon structures and supporting the successful
formation of Cdots. The observed changes in chemical and
optical characteristics indicate that the hydrothermal process
is not only simple and environmentally friendly, but also
effective in producing Cdots from plant-based extracts. Al-
though the characterization performed in this study is still
limited to FTIR, UV-Vis, and FE-SEM, the results provide
a strong initial foundation for the further development of
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natural extract-based Cdots, especially for applications in the
environmental, sensing, and biomedical fields. However, this
study serves as an initial screening rather than a definitive
determination of the most superior precursor. Therefore, only
qualitative analysis was used to compare the chemical and
optical changes in the fabricated Cdots from different plant
extracts. Further research will include quantitative evalua-
tions, such as photoluminescence intensity, quantum yield,
and surface charge analysis, to provide a more comprehen-
sive comparison between precursors and identify the most
promising plant sources for future applications.
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