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ABSTRACT
Sodium batteries are the most potential candidates for future and green energies
storage systems. However, there are problems with structural instability in the
electrodes, which affect battery performance. Therefore, this study investigated
the adsorption and diffusion mechanisms at the anode using a phase puckered
Germanium Telluride (GeTe) monolayer structure. Density functional theory (DFT)
calculations show that the Na-adsorbed hollow Te-Te structure is the most stable
adsorption configuration (-1.25 eV). In the diffusion scheme, Na atoms move through
the hollow Te-Te (initial state) followed by the hollow Ge-Ge (transition state), then to
the hollow Te-Te (final state). The diffusion mechanism that occurs has lowest energy of 0.09 × 10−4 eV. These results suggest that the phase
puckered GeTe monolayer has the potential as a high-performance sodium battery anode.
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1. INTRODUCTION

A dvances in portable electronic devices, smart grids, and
electric vehicles have led to increased efficiency in en-

ergy storage systems [1, 2]. The most dominant green energy
storage system used today is rechargeable batteries [3]. There
are several types of rechargeable batteries, such as lithium,
sodium, potassium, and aluminum [4, 5, 6, 7]. Based on these
battery types, lithium batteries show good performance com-
pared to other battery types [8, 9, 10]. Lithium batteries have
advantages such as high energy density and good power den-
sity [11, 12]. However, the availability of lithium is limited,
and the operational cost is expensive, so an alternative to
lithium batteries is needed.

Sodium batteries are the most potential candidate as a
replacement for lithium batteries [13, 14, 15, 16, 17, 18, 19].
This is based on its low price and abundant availability in
nature [17]. In addition, sodium batteries have disadvantages
including a larger atomic radius than lithium, low energy den-
sity, poor cycle life, and poor volume expansion during the
charging/discharging process [20, 21]. So, to overcome these
weaknesses, further development is needed on the electrode
component [22]. Electrode components consist of cathode,
anode and SEI [23, 24]. Based on the three components, the an-
ode has an important role in improving battery performance
[25]. In this study, germanium telluride (GeTe) is consid-
ered as a promising anode for sodium batteries [2, 26, 27, 28].
GeTe has been reported as an anode in batteries and other
devices (such as electronic devices, thermoelectric, electrodes)
[2, 29, 30, 31]. However, the issue of sodium atom adsorption
mechanism on GeTe anode is still unclear.

Investigating the structure and phase of GeTe on sodium

battery anodes can help to understand the mechanism that
occurs. The structure used is monolayer because it has advan-
tages such as high theoretical capacity, fast sodiation kinetics,
able to increase stability, can reduce structural instability and
electrolyte decomposition [9, 11, 12, 15, 27, 32, 33]. The puck-
ered phase is an option in designing anodes because it has
good ion diffusion [2], shows high theoretical capacity and
good cycle stability [34, 35]. Thus, the phase puckered mono-
layer structure has potential as a high-performance anode.
Based on its potential, an understanding of adsorption and
diffusion is needed. Therefore, this study varies the place-
ment of Na atoms (such as top Ge, top Te, hollow Ge-Ge,
hollow Te-Te, bridge upper, bridge lower and middle) to
determine the adsorption and diffusion that occurs in mono-
layer phase puckered GeTe using density functional theory
(DFT).

2. METHODS

In this study, the density functional theory was performed us-
ing Quantum ESPRESSO [36, 37],which is aims to determine
the adsorption and diffusion energy in puckered GeTe. The
calculation parameters we set 50 Ry and 500 Ry for charge
and wavefunction cutoff, respectively. We further set the
convergence threshold by 10−8 Ry. In order to perform the
calculation more accurately, we used the PBE3 functional
with ONCV pseudopotential. We used a vacuum slab 15 Å
to remove the interaction of the slab repetitions. The k-point
mesh variation (6×6×1), (8×8×1), (10×10×1) and (2×2) unit
cells.

To calculate the adsorption energy (Eads) the following
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Figure 1. Clean surface phase puckered GeTe: (a) Top view,
(b) Side view

equation was used,

Eads = (ETotal − (ESurface + EIsolated)) (1)

where the total energy (Etotal) shows the energy of Na
atoms adsorbed on the puckered GeTe monolayer, the surface
energy (Esurface) shows the energy of the clean surface struc-
ture. Whereas the isolated energy (Eisolated) represents the
energy of Na atoms during the vacuum state in the system.
The Diffusion energies (Ediff) were calculated by compared
between the most stable Eads with the nearest neighbor Eads.

To further understand the adsorption properties, we in-
vestigated the charge density of various sites of GeTe’s mono-
layer phase puckered structure using the equation of

∆ρ(r) = ρtotal(r)− ρsurface(r)− ρmolecule(r) (2)

where ρtotal is the charge density of Na atoms adsorbed
on puckered GeTe, ρ surface is the charge density of clean
surface puckered GeTe and ρ molecule is the charge density
of isolated Na atoms.

Figure 2. Calculated total energy of clean GeTe with k-point
mesh and grid variations

3. RESULTS AND DISCUSSION

3.1 Clean Surface Phase Puckered GeTe
Phase puckered GeTe is a two-dimensional crystal structure.
Puckered GeTe is formed due to a phase transition that is dis-
placive in the GeTe honeycomb crystal. The displacive nature
is the movement of atoms in the crystal lattice that forms the
puckered phase. We investigated the clean surface (see Figure
1) with variation of k-point mesh and grid (non offset and
with offset). The results show that k-point mesh with non
offset grid has significant results in achieving equilibrium,
and the k-point used is 6×6×1 (Figure 2).

3.2 Na Adsorption on Monolayer Phase Puckered GeTe
To determine the adsorption properties of Na atoms on the
monolayer phase puckered GeTe structure, we consider vari-
ous adsorption site, namely bridge, hollow, top and middle.
Those sites are similar with previous research by putra et al.
[38]. At the top site, Na atoms are placed above Ge and Te
atoms. Middle site, Na atoms are located in the middle of the
structure. The placement of Na atoms at the bridge site is at
the top and bottom of the structure, while at the hollow site
Na atoms are in the Te-Te and Ge-Ge hollows. We found that
the Te-Te hollow site is the most stable adsorption site, as seen
in Figure 3. The calculated adsorption energies of the Te-Te
hollow adsorption site are -1.25 eV. The minus adsorption en-
ergies represent a stronger interaction between Na atoms and
puckered GeTe, and a negative value indicates an exothermic
reaction. The distance between the surface (Te atom) and Na
atom 3.198 until 3.358 Å. While the distance to the Ge atoms
is around 0.2 Å larger than that Na-Te atoms distances. These
indicated that the Na-Te or Na-Ge atom introduce similar
interaction with the adsorbed atoms. These calculated re-
sults also in good agreement with the previous results, which
mention the hollow site give the stronger adsorption energies
[38].

Figure 3. Most stable adsorption site of Na atom on GeTe
puckered phase from (a) top and (b) side views. The yellow,
red, and green spheres represent the sodium, germanium,

and tellurium atoms respectively.

Figure 4. The calculated charge density difference of the
most stable adsorption site of Na atom on GeTe puckered

phase from (a) top and (b) side views. The cyan and yellow
color represent the loss of electrons and gain of electrons on

the atom, respectively.

Our calculated results further indicated that the Na atoms
adsorbed on monolayer phase puckered GeTe show a change
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Figure 5. The calculated Density of States (DOS) of adsorbed Na over GeTe puckered surface. The red, green, and yellow
represents the calculated DoS of total, GeTe surface, and Na molecules, respectively.

in bond length. Na-Te and Ge-Te are bonds that experi-
ence changes in bond length after optimization results. This
change can explain the interaction between atoms related to
the potential energy surface (PES) [39]. According to the PES
concept, the difference in bond length is caused by repulsion
[40]. The shorter bond length represents the repulsive force
between atoms is stronger than the force of attraction, while
the longer bond length applies the opposite.

The condition of Na atoms after optimization tends to
interact with Te atoms. This is influenced by the atoms vi-
brating with each other. In our case, the size of the atomic
radii (Na > Te > Ge) affects the vibrating atoms, the formation
of bent bonds and the bond angles in Te-Na (see figure after
optimization). In addition, we verified the bond length op-
timization calculation results with experimental results and
reference DFT calculations.

In order to explain the interaction between Na and the
surface, we investigated the charge density difference. Figure
4 shows the charge density of the investigated sites. The
cyan color represents the loss of electrons, and the yellow
color represents the gain of electrons on the atom. The largest
charge difference is located around the Na atom, while the
adjacent atoms (Ge and Te) show excess charge. Thus, this
structure has ionic characteristics.

We also calculated the density of state (DOS) of various
sites shown in Figure 5. After the clean surface structure is
adsorbed by Na atoms, there is an increase in energy around
the fermi area. The increase represents metallic properties
that are beneficial in the conduction of electricity in the SIB
anode. It can be observed that there is overlap between ρ total,
ρ surface and ρ molecule which indicates covalent hybridiza-
tion. The results of this investigation suggest that monolayer
phase puckered GeTe is dominated by covalent bonds and
ionic interactions.

3.3 Mechanism of Diffusion
The diffusion energy values in Table 1 show that Na atoms
can move from the most stable adsorption site as the initial
state (hollow Te-Te) to the nearest neighbor site and to the
final state (hollow Te-Te) through transition states such as
top Te, hollow Ge-Ge, bridge Te-Te, bridge upper, top Ge,
middle, bridge lower. Table 3 also shows that the diffusion
scheme of Na atoms through hollow Ge-Ge gives the smallest
diffusion energy (0.09 ×10−4 eV). In addition, diffusion at
bridge Te-Te (16.3 ×10−4 eV), top Ge (16.4 ×10−4 eV), bridge
upper (16.3 ×10−4 eV) sites shows the next most probable
diffusion scheme. Based on the possible diffusion schemes

occurring in Na-adsorbed puckered GeTe, the 3rd diffusion
scheme (Figure 6(c)) becomes the most probable scheme due
to the smallest diffusion energy. The diffusion mechanism
in the 3rd scheme shows Na atoms moving through hollow
Te-Te (initial state) and then through hollow Ge-Ge (transition
state) to reach the final state. (hollow Te-Te).

Table 1. The most stable diffusion energy in the puckered
phase of GeTe adsorbed with Na.

Diffusion schemes Diffusion Energies (eV)
Hollow Te-Te to Bridge Te-Te 16.3 × 10−4

Hollow Te-Te to Bridge upper 16.3 × 10−4

Hollow Te-Te to Bridge lower 239.5 × 10−4

Hollow Te-Te to Top Ge 16.4 × 10−4

Hollow Te-Te to Hollow Ge-Ge 0.09 × 10−4

Hollow Te-Te to Middle 238.7 × 10−4

Hollow Te-Te to Top Te 0.2 × 10−4

In the diffusion process, temperature is one of the pa-
rameters in influencing the diffusion mechanism so that it
will have an impact on battery performance. Based on the
Boltzman equation or thermal energy equation as follows.

Et = kB × T (3)

Where Et is the thermal energy, kB is Boltzman’s constant,
and T is the temperature. At 300 K the required thermal
energy is 1.70112 ×10−2 eV/K. While in the 3rd scheme dif-
fusion process with a diffusion energy of about 0.09 ×10−4

eV. This shows that Na atoms have diffused at 300 K. In addi-
tion, this study also considers the diffusion energy of other
DFT-based materials. The energy comparison results in Ta-
ble 1 show that monolayer phase puckered GeTe can be a
high-performance sodium battery anode material.

4. CONCLUSION

We have successfully calculated the adsorption and diffusion
energies of Na atom adsorption on GeTe puckered phase sur-
face. We found that the Na-adsorbed hollow Te-Te structure
is the most stable adsorption configuration (-1.25 eV). The
diffusion mechanism that occurs has the lowest energy of
0.09 ×10−4 eV. These results suggest that the phase puck-
ered GeTe monolayer has the potential as a high-performance
sodium battery anode. Further investigations are needed to
confirm the ability the GeTe as anode in sodium batteries.
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Figure 6. Diffusion schemes of Na-adsorbed puckered GeTe: (a) 1st diffusion scheme, (b) 2nd diffusion scheme, (c) 3rd diffusion
scheme. IS (initial state), TS (transition state), FS (final state)
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