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ABSTRACT
Industrial dye pollutants, particularly azo dyes like Congo red, pose sIndustrial
dye pollutants, particularly azo dyes like Congo red, pose significant environmen-
tal and health risks due to their toxic and non-biodegradable nature. This study
assesses ZnAl Layered Double Hydroxide (ZnAl LDH) as an effective adsorbent,
incorporating comprehensive materials characterization and adsorption isotherm
analyses. Materials characterization using SEM and XRD confirmed the structural
integrity and morphological suitability of ZnAl LDH for dye adsorption. Results demon-
strated that ZnAl LDH, particularly the HMTA-based variant (h-ZnAl LDH), achieved
superior adsorption capacities of up to 17.8 mg/g, significantly outperforming the
urea-based (u-ZnAl LDH) with capacity of 12.3 mg/g. Kinetic analysis showed that
the pseudo-second-order (PSO) model provided a better fit (R2 = 0.995) than the
pseudo-first-order (PFO) model, indicating that chemisorption plays a dominant role
in the adsorption mechanism. The adsorption process was also best described by
the Langmuir isotherm model (R2 = 0.989), indicating monolayer adsorption on a
homogeneous surface, while the Freundlich model (R2 = 0.944) also provided a
reasonable fit, suggesting some degree of multilayer adsorption on heterogeneous surfaces. The superior performance of HMTA-based ZnAl
LDH presents a significant advancement in wastewater treatment technologiesignificant environmental and health risks due to their toxic and
non-biodegradable nature.
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1. INTRODUCTION

T extile dyes, commonly composed of azo compounds and
benzene groups, are a major class of non-biodegradable

pollutants [1, 2]. Azo dyes are extensively used in textile
manufacturing to create vibrant colors. After use, these dyes
are often discarded into rivers or irrigation channels. Most
organic dyes in textile industry wastewater possess aromatic
structures, making them resistant to natural decomposition
and potentially hazardous [3]. One such dye, Congo red, is
known for its carcinogenic and mutagenic properties, posing
significant health risks [4]. Thus, developing an efficient
method to eliminate these pollutants from aquatic ecosystems
is crucial [5, 6].

Various techniques, including sedimentation, filtration,
coagulation, oxidation, electrochemistry, advanced oxida-
tion processes (AOPs), biological methods, adsorption, ion
exchange, photocatalysis, and piezo-photocatalysis, have
been explored to mitigate the adverse effects of dye waste
[7, 8, 9, 10, 11]. ZnAl Layered Double Hydroxide (ZnAl LDH)
has emerged as a promising material in various dye removal

technologies due to its unique layered structure and high
anion-exchange capacity [12, 13]. This structure consists of
positively charged brucite-like layers that can trap anions
such as those found in azo dyes between the layers, making
ZnAl LDH highly effective for dye adsorption. The material
has been widely applied in adsorption techniques due to its
capacity to remove both cationic and anionic dyes, including
methyl orange, methylene blue, and Congo red, through ion
exchange and surface adsorption processes [14, 15, 16].

Despite the proven efficiency of ZnAl LDH in various
dye removal processes, the potential of its different synthesis
methods and their impact on adsorption performance has
not been thoroughly explored. This study aims to investigate
the adsorption capabilities of ZnAl LDH synthesized using
two different mineralizers namely hexamethylenetetramine
(HMTA) and urea in the removal of Congo red, a widely
used and hazardous azo dye. By comparing the performance
of HMTA-based and urea-based ZnAl LDH, this research
seeks to determine which variant exhibits superior adsorp-
tion capacity and kinetic behavior. The study also models
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Figure 1. SEM images and corresponding EDS analysis of (a) u-ZnAl LDH and (b) h-ZnAl LDH samples

the adsorption kinetics using Pseudo-first-order (PFO) and
Pseudo-second-order (PSO) models, as well as evaluates the
adsorption isotherms to better understand the mechanism
behind the dye removal. The findings are expected to con-
tribute to the development of more efficient and scalable ZnAl
LDH-based systems for industrial wastewater treatment.

2. MATERIAL AND METHODS

2.1 Materials
All precursor materials and chemicals including Zinc Ni-
trate Hexahydrate (Zn(NO3)2 · 6 H2O), Aluminum Nitrate
Nonahydrate (Al(NO3)3 · 9 H2O), hexamethylenetetramine
(HMTA), urea, and Congo red (CR, C.I. 22120) dye were pur-
chased from Merck, Darmstadt, Germany.

2.2 Preparation of ZnAl Layered Double Hydroxide
The ZnAl layered double hydroxides were synthesized via a
hydrothermal method similar to previous literature [17]. A
precursor solution was prepared by dissolving 5.95 grams
of Zn(NO3)2 · 6 H2O and 3.75 grams of Al(NO3)3 · 9 H2O in
70 mL of distilled water to achieve a molar ratio of 2:1. This
solution was stirred at 500 rpm on a hot plate until the precur-
sors fully dissolved, approximately 30 minutes. Two distinct
mineralizer solutions were then prepared: one containing
3.65 grams of HMTA and another containing 1.65 grams of
urea, each was added into the previous solutions and further
stirred at 500 rpm for 30 minutes until homogeneous. These
solutions were each transferred to separate 100-mL Stainless-
steel Teflon-lined autoclaves, sealed, and heated at 140 ◦C
for 24 hours. The resultant precipitates were vacuum filtered,
washed with distilled water, and dried in an oven at 80 ◦C
for 4 hours.

2.3 Materials characterizations
The synthesized materials were first characterized by Scan-
ning Electron Microscopy equipped with Energy Dispersive

X-ray Spectroscopy (SEM-EDS JEOL JSM-6510) to assess sur-
face morphology and elemental composition. X-ray Diffrac-
tometry (XRD, Rigaku, SmartLab SE basic) was used to evalu-
ate crystallinity, and Fourier Transform Infrared Spectroscopy
(FTIR, Shimadzu IRSpirit-X Compact) was employed to iden-
tify chemical bonding and functional groups.

2.4 Adsorption investigations
The adsorption properties of the synthesized materials were
investigated through a comprehensive study. Initially, the
adsorption capacity of each catalyst, ZnAl-HMTA and ZnAl-
Urea, was determined using a 10 ppm Congo red dye solution.
For this, 0.05 grams of each catalyst was added to 100 ml of
the dye solution, which was then stirred at 300 rpm on a
hot plate stirrer. Samples of 5 ml were collected at intervals
of 10 minutes for a duration of 60 minutes. These samples
were analyzed using UV-Vis spectroscopy to assess the dye’s
adsorption. Subsequently, adsorption isotherm experiments
were conducted using varying concentrations of Congo red
dye, specifically at 5, 10, 15, 20, and 25 ppm. This series aimed
to understand the adsorption behavior under different dye
concentrations, following the same sampling and analytical
procedures as the initial tests.

3. RESULTS AND DISCUSSION

3.1 ZnAl LDH characteristics
The SEM images presented in Figure 1(a) and (b) reveal dis-
tinct morphological differences between the u- and h-ZnAl
LDH samples. Figure 1(a) shows the u-ZnAl LDH exhibited
an irregular and agglomerated morphology, characterized by
uneven and less defined structures, suggesting that the urea
precursor leads to a less uniform nucleation and growth pro-
cess under hydrothermal conditions [18]. In contrast, Figure
1(b) depicts the h-ZnAl LDH samples, in which exhibits a
more uniform, “plate-like” morphology with better-defined
particles [19, 20]. The consistent structure of the HMTA-based
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Figure 2. The (a) XRD and (b) FTIR analysis of the u-ZnAl LDH and h-ZnAl LDH samples

ZnAl LDH could be attributed to the more controlled decom-
position of HMTA during synthesis, which promotes uniform
nucleation and growth of the LDH crystals.

The accompanying EDS (Energy-Dispersive X-ray Spec-
troscopy) analysis provides insights into the elemental com-
position of the samples. The u-ZnAl LDH (Figure 1(a), right
side) shows a Zn/Al atomic ratio of approximately 0.68:1,
with zinc and aluminum atomic percentages of 10.78% and
15.94%, respectively. This ratio indicates a significant devia-
tion from the targeted 2:1 ratio, with a lower zinc content and
higher aluminum content than expected. This could suggest
incomplete incorporation of zinc or over-incorporation of alu-
minum during the synthesis process. In contrast, the h-ZnAl
LDH (Figure 1(b), right side) exhibits a Zn/Al atomic ratio
of approximately 2.01:1, with zinc and aluminum atomic per-
centages of 18.13% and 9.03%, respectively. This ratio closely
matches the desired 2:1 stoichiometry, indicating a more suc-
cessful incorporation of zinc relative to aluminum in the LDH
structure when using HMTA as a precursor [21].

The XRD patterns of the u-ZnAl LDH and h-ZnAl LDH
samples are shown in Figure 2(a). The diffraction peaks ob-
served in the h-ZnAl LDH sample correspond to the charac-
teristic reflections of a well-formed layered double hydroxide
structure, with sharp and intense peaks at 2θ values around
11.6 ◦, 23.3 ◦, 34.8 ◦, 39.3 ◦, and 60.8 ◦. These peaks can
be indexed to the (003), (006), (012), (015), and (110) planes,
respectively, indicating a high degree of crystallinity and a
well-ordered layered structure with the Zn2

+/Al3+ catopnic
ratio of 2:1 [22, 23]. In contrast, the XRD pattern of the u-ZnAl
LDH shows broader and less intense peaks. This suggests
that the u-ZnAl LDH has a lower crystallinity compared to
the h-ZnAl LDH. The peaks corresponding to the (003) and
(006) planes are present but are less defined, indicating that
the layered structure is less ordered, likely due to the irregular
and agglomerated morphology observed in the SEM images.
The lower crystallinity might also be a result of the Zn/Al
ratio deviation from the ideal 2:1 stoichiometry, as previously
discussed.

The FTIR spectra of the u-ZnAl LDH and h-ZnAl LDH
are presented in Figure 2(b). Both spectra display charac-
teristic absorption bands that correspond to the functional
groups present in the ZnAl LDH structure [22]. For the h-
ZnAl LDH, the broad absorption band around 3400 cm−1 is

attributed to the OH stretching vibrations of the hydroxyl
groups in the LDH layers and interlayer water molecules
[24]. The band around 1638 cm−1 is due to the bending vibra-
tions of water molecules in the interlayer [24]. The u-ZnAl
LDH also exhibits similar band around 3400 cm−1 and 1638
cm−1, but they are broader and less intense, reflecting the
lower crystallinity and potentially less structured interlayer
water in this sample. This aligns with the XRD results indicat-
ing poorer crystallinity in u-ZnAl LDH. The bands observed
around 1500 cm−1 and 1380 cm−1 in both spectra correspond
to the stretching vibrations of the interlayer carbonate anions,
which are commonly present in LDHs due to their affinity for
CO2 from the atmosphere [25, 26]. However, the intensity of
these bands is lower in the u-ZnAl LDH, which may be due to
a lower degree of carbonate intercalation or less ordered layer
stacking. The FTIR spectra also show bands in the 600–800
cm−1 range, corresponding to the M-O (metal-oxygen) and
M-O-M (metal-oxygen-metal) stretching vibrations within the
LDH layers [23, 27]. The h-ZnAl LDH shows more defined
bands in this region, consistent with its higher crystallinity
and better-ordered layered structure.

3.2 ZnAl LDH adsorption kinetics
In the analysis of Congo red dye adsorption, UV-Vis absorp-
tion spectra reveal key insights into the effectiveness of the
catalysts over a 60-minute period. Figure 3(a) and (b) displays
the absorption spectra for u-ZnAl LDH and h-ZnAl LDH, re-
spectively. Initially, both catalysts show strong absorption
peaks around 498 nm, indicative of the presence of Congo
red dye. As time progresses, these peaks diminish, with h-
ZnAl LDH demonstrating a more pronounced decrease in
intensity, suggesting more effective dye adsorption compared
to u-ZnAl LDH. This observation is visually supported by
Figure 3(c), where the upper row showing u-ZnAl LDH and
the lower row h-ZnAl LDH both depict a reduction in dye
colour intensity. However, the colour fading is notably more
significant in the h-ZnAl LDH samples, aligning with the
quantitative data from the UV-Vis absorption spectra.

Figure 3(d) quantifies the adsorption capacity, calculate
using Equation that available in literatures [28, 29]. The result
illustrating a rapid increase in dye removal within the first
20 minutes for both catalysts, which then plateaus towards
the 40-minute mark. Here, h-ZnAl LDH reaches a higher
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Figure 3. (a) UV-Vis absorption spectra for (a) u-ZnAl LDH and (b) u-ZnAl LDH sample over time (60 min). (c) Visual
demonstration of dye adsorption; the upper row corresponds to u-ZnAl LDH and the lower row to h-ZnAl LDH, showing color

intensity reduction over time. (d) Adsorption capacity of u-ZnAl LDH and h-ZnAl LDH as a function of contact time with
fittings to PFO and PSO kinetic models. Linear fit plots for (e) PFO and (f) PSO kinetics.

equilibrium capacity (Qe) of 17.8 mg/g, compared to 12.3
mg/g for u-ZnAl LDH. The adsorption kinetics, analysed
through pseudo-first-order (PFO) and pseudo-second-order
(PSO) models, further elucidate the adsorption dynamics
[30, 31, 32]. The PFO model shows a poorer fit to the data, es-
pecially for u-ZnAl LDH as seen in Figure 3(e). Sample shows
a low R2 value of 0.802 and 0.673 for u-ZnAL LDH and h-
ZnAl LDH sample, respectively. Conversely, the PSO model,
indicative of chemisorption involving shared or exchanged
electrons between dye and catalyst, fits the experimental data
exceptionally well for both catalysts with R2 value higher
than 0.995, as depicted in Figure 3(f). Overall, the analyses
clearly demonstrate that h-ZnAl LDH is more effective than
u-ZnAl LDH in adsorbing Congo red dye from aqueous solu-
tions. The superior performance of h-ZnAl LDH is evident
in both the visual and quantitative results and is further sup-
ported by kinetic modeling that confirms chemisorption as
the predominant mechanism of dye removal. These find-
ings highlight the potential of h-ZnAl LDH as a highly ef-
fective catalyst for environmental remediation applications,
particularly in the treatment of wastewater containing dye
pollutants.

3.3 ZnAl LDH adsorption isotherm
The adsorption behavior of Congo red dye onto ZnAl LDH
was investigated using UV-Vis absorption spectra and mod-
eled through adsorption isotherms. The UV-Vis spectra dis-
played in Figure 4(a) for different concentrations (5, 10, 15,
20, and 25 ppm) show a marked decrease in intensity over

60 minutes, signaling effective dye adsorption. The corre-
sponding photographs within the panel visually confirm this
trend, where a noticeable fading of the dye’s color intensity is
evident, especially prominent at higher concentrations. This
indicates robust adsorption capabilities of ZnAl LDH, consis-
tent across the tested dye concentration range.

Further quantification of the adsorption process is ex-
plored in Figure 4(b), (c), and (d) through Langmuir and
Freundlich isotherm models [33, 34]. The experimental data
plotted alongside the isotherm curves in Figure 4(b) fits both
models well, suggesting simultaneous monolayer and po-
tentially multilayer adsorption on heterogeneous sites. The
Langmuir isotherm, depicted in Figure 4(c), shows a high
correlation (R2 = 0.98909) supporting a monolayer adsorption
mechanism where each adsorbent site on the ZnAl LDH binds
a single molecule of dye. This linear relationship emphasizes
that ZnAl LDH provides specific, energetically uniform ad-
sorption sites that become saturated without overlap once
occupied.

Conversely, the Freundlich isotherm model presented in
Figure 4(d) plots, yielding an R2 value of 0.94382, indicative
of multilayer adsorption on a heterogeneous surface. This
model’s fit suggests that ZnAl LDH also possesses a variety of
adsorption sites with different binding energies, likely accom-
modating multiple layers of dye molecules. The effectiveness
of both isotherm models implies complex adsorptive interac-
tions on ZnAl LDH’s surface, characterized by a combination
of physical and chemical adsorption processes. Overall, the
data illustrates that ZnAl LDH is a potent adsorbent for re-
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Figure 4. (a) UV-Vis absorption spectra at varying Congo red concentrations (5, 10, 15, 20, 25 ppm) over time (0 to 60 minutes),
with inset photographs showing color change in dye solutions. (b) Experimental adsorption capacity (qe) plotted against

equilibrium concentration (Ce), fitted with Langmuir and Freundlich isotherm models. The (c) Langmuir and (f) Freundlich
isotherm plot of the CR adsorption on the h-ZnAl LDH surfaces

moving Congo red dye from aqueous solutions, validated
by both visual and quantitative analyses. The congruence
of the experimental results with Langmuir and Freundlich
isotherms provides valuable insights into the nature of the
adsorption mechanism, proposing that ZnAl LDH could be
particularly effective in water treatment applications where
comprehensive dye removal is essential.

4. CONCLUSION

This study aimed to evaluate the effectiveness of ZnAl Lay-
ered Double Hydroxide (ZnAl LDH) in adsorbing Congo
red dye from aqueous solutions and to accurately model
this process using Langmuir and Freundlich isotherms. Key
findings demonstrated that ZnAl LDH effectively reduces
dye concentrations, achieving up to 17.8 mg/g adsorption
capacity at higher concentrations. The Langmuir isotherm
provided a strong fit (R2 = 0.98909), supporting monolayer
adsorption, while the Freundlich isotherm, with an R2 of
0.94382, indicated efficient multilayer adsorption on heteroge-
neous surfaces. These results highlight ZnAl LDH’s potential
for practical water purification applications. Future research
should explore the optimization of ZnAl LDH synthesis to
increase its cost-effectiveness and operational efficiency. In-
vestigating the material’s performance with different classes
of industrial pollutants could further establish its versatility
in broader environmental remediation applications, offering
a significant step forward in wastewater treatment technolo-
gies.
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