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ABSTRACT
This study investigates the transformation of CeO2 nanostructures through various
calcination temperatures and their subsequent impact on morphological, structural,
and photocatalytic properties. X-ray diffraction (XRD) analysis reveals the presence of
cerium oxycarbonate in the uncalcined samples, transitioning to a face-centered cubic
CeO2 phase post-calcination at 500 ◦C. The scanning electron microscopy (SEM)
imaging delineates a morphological evolution from distinct, rod-like structures in the
uncalcined state to sintered, agglomerated forms as calcination temperatures ascend
from 500 ◦C to 800 ◦C. The crystallite size, calculated using Scherrer’s Equation,
displayed a proportional increase with temperature. The photocatalytic degradation
of Congo red dye under UV light was analyzed using UV-Vis spectroscopy, with the
calcined samples exhibiting varying degrees of adsorption and photocatalytic activity.
The study found that higher calcination temperatures correlate with increased photocatalytic performance, potentially due to enhanced crystallinity.
This assertion is supported by pseudo-first-order kinetic modeling, indicating improved photocatalytic efficiency with higher calcination temperatures,
underlined by increasing rate constants. These findings underscore the intricate relationship between calcination-induced morphological and
structural changes and the photocatalytic prowess of CeO2 nanostructures.
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1. INTRODUCTION

Photocatalytic degradation has emerged as a compelling
method to tackle the issue of dye pollution in wastewa-

ter treatment, due to its potential for complete mineralization
of organic pollutants into non-toxic byproducts [1, 2, 3]. Sev-
eral semiconductors, such as ZnO, TiO2, SnO2, MnO2, Fe2O3,
NiO, WO3, Nb2O5, and CeO2, have been developed as effec-
tive photocatalytic materials [4, 5, 6, 7, 8]. Cerium dioxide
(CeO2), in particular, has garnered increasing attention in the
field of environmental engineering for its remarkable redox
properties, high oxygen storage capacity, and stability [9, 10].
These attributes render it an indispensable material for appli-
cations in catalysis, fuel cells, and as an additive in diesel fuels
to reduce emissions [11]. Recent advancements in nanotech-
nology have further enhanced the utility of CeO2, especially
in nanostructured forms, which exhibit unique properties at-
tributable to their high surface-to-volume ratio and quantum
size effects [12]. These nanostructures are typically synthe-
sized using various methods, with the hydrothermal process
being one of the most favored due to its relatively mild con-
ditions, scalability, and the quality of the resultant products
[13, 14]. The resultant morphologies, including rod-like struc-

tures, are often determined by the synthetic conditions and
can be fine-tuned to optimize the material’s performance for
specific applications.

Our previous study highlighted the potential applica-
tion of CeO2 nanorods, fabricated using the hydrothermal
process, as photocatalysts in dye degradation [15]. How-
ever, their performance needs enhancement to produce high-
performance photocatalytic materials. Literature suggests
that increasing the calcination temperature leads to materials
with better photocatalytic performance [16]. The calcination
process plays a pivotal role in tailoring the properties of metal
oxide nanostructures. It is known to induce morphological
changes, enhance crystallinity, and remove organic residues
or other volatile contaminants [17, 18]. These alterations are
crucial as they directly influence the material’s catalytic ac-
tivity, adsorptive capacities, and overall chemical reactivity.
Calcination temperature is a critical parameter; it can dictate
the phase stability and surface characteristics of the resulting
CeO2. While lower temperatures may be sufficient to induce
phase changes from precursors such as cerium oxycarbon-
ate to pure CeO2, higher temperatures may lead to sintering,
growth of crystallite size, and potentially the formation of
secondary phases. This study aims to understand the relation-
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Figure 1. The XRD pattern of (a) calcined (CeO2-500) vs uncalcined CeO2 and (b) CeO2 calcined at different temperature. (c) The
CeO2 crystallite size calculated from XRD patterns. (d) BET analysis of the CeO2-500 samples.

ship between calcination conditions and the characteristics
of the resulting CeO2 nanostructures, which is essential for
optimizing their performance in environmental applications.

2. EXPERIMENTAL SECTION

2.1 Materials
Cerium nitrate hexahydrate (Ce(NO3)3 · 6 H2O), urea (CO(NH2)2),
and Congo red (CR, C.I. 22120) were purchased from Merck,
Darmstadt, Germany. The deionized (DI) water was used as
solvent both during the hydrothermal and dye degradation
measurements. All materials were used as received without
any further purifications.

2.2 Preparation of CeO2 nanostructures and materials char-
acterizations

The CeO2 nanorods were fabricated similar to our previously
reported study [15]. Typically, 3.0 g of Ce(NO3)3 and 4.2 g of
CO(NH2)2 were dissolved in 70 mL deionized water using
a magnetic stirrer until the salt completely dissolved. The
mixed solution was then placed inside a 100-mL Teflon-lined
autoclave and sealed tightly for the hydrothermal process.
The hydrothermal growth took place at a temperature of

100 ◦C for 12 hours inside an electric oven. The solid was
then washed with DI water and filtered several times using
a vacuum filter. The solid powder was dried in an electric
oven at 80 ◦C for 4 hours before calcination. To investigate
the effect of calcination temperature on the dye removal per-
formance, the calcination temperatures were varied (i.e., 500,
600, 700, and 800 ◦C) and the samples were named CeO2-
500, CeO2-600, CeO2-700, and CeO2-800, respectively. Each
sample was calcined using a predetermined holding tem-
perature and held for 2 hours, with a ramp of 5 ◦C/min. A
yellowish powder was obtained for each calcination tempera-
ture and used for materials characterization and dye removal
investigations. To investigate the effect of the calcination tem-
perature on the CeO2 morphology and crystalline structure,
scanning electron microscopy (SEM, JEOL JSM-6510) and X-
ray diffractometry (XRD, BRUKER D8 ADVANCE ECO) were
used respectively.

2.3 Photocatalytic dye degradation measurements
For the photodegradation investigation, we used a photore-
actor chamber equipped with four Phillips UVC lamps (10
W, λ ≈ 253.7 nm). Congo red (CR) aqueous solution was
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Figure 2. The SEM images of the (a) uncalcined CeO2, and calcined CeO2 (b) CeO2-500, (d) CeO2-600, (e) CeO2-700, and (f)
CeO2-800 samples

prepared with a concentration of 10 ppm as the model dye.
Typically, 50 mg of CeO2 powder was put into 100 mL CR so-
lutions (10 ppm) and stirred inside the photoreactor chamber.
The reaction was initially taken place under dark conditions
for 30 min to achieve stable adsorption conditions. After that,
the UV lamp was then turned on, and the CR solution was
subjected to UV irradiations. Every 20 min, 3.5 mL suspen-
sion was taken and filtered using polyvinylidene fluoride
(PVDF) syringe filters to separate the CeO2 powder. The ab-
sorption spectra of 3.5 mL of each time variation were then
measured by a UV-Vis spectrophotometer (Shimadzu UV-
1280). The measurement was done for all samples (CeO2-500,
CeO2-600, CeO2-700, and CeO2-800). The concentration of
the CR solutions was determined using the absorbance value
at the maximum wavelength (λ = 498 nm).

3. RESULTS AND DISCUSSION

Figure 1 shows the XRD pattern of the uncalcined and cal-
cined CeO2 samples. The uncalcined CeO2 samples show
characteristics of cerium oxycarbonate (Ce2(CO3)2O ·H2O)
in accordance with the PDF number 44-0617 (Figure 1a),
which is similar to previous literatures [19]. This phase is
a well-known oxycarbonate of cerium that is mostly obtained
through precipitation of cerium salt through hydrolysis of
urea [20]. After calcination (CeO2-500), a new crystal phase
was obtained, which has excellent similarity with the XRD
pattern of face-centered cubic (FCC) CeO2 (PDF#43-1002)
[21, 22]. Previous studies found that the organic residues
obtained during the hydrothermal process of CeO2 start to
decompose at a temperature of 320 ◦C [23, 24]. Based on that
information, we believed that a calcination temperature of
500 ◦C is sufficient to convert cerium oxycarbonate into face-
centered cubic CeO2 [25]. The peaks were observed at 2θ
values of 28.5◦; 33.1◦; 47.5◦; 56.3◦; 59.1◦; 69.4◦; 76.7◦; 79.1◦;
and 88.4◦, which correspond to the (hkl) planes of (111), (200),
(220), (311), (222), (400), (331), (420), and (422), respectively.

The influence of various calcination temperatures on the

crystalline phase of CeO2 is depicted in Figure 1b. Character-
istic peaks of face-centered cubic (FCC) CeO2 were observed
for all samples, without the presence of additional or sec-
ondary cerium phases, confirming the successful fabrication
of CeO2 nanostructures. Furthermore, the peak intensity and
sharpness corresponding to cubic CeO2 increased with the
calcination temperature. Figure 1c presents the crystallite
sizes of the CeO2 samples at different calcination tempera-
tures, calculated from the XRD data using Scherrer’s Equation
[26, 27]. The crystallite size was calculated to be 7.2 nm, 8.6
nm, 13.4 nm, and 19.4 nm for the CeO2-500, CeO2-600, CeO2-
700, and CeO2-800, respectively. The crystallite size increases
with increasing calcination temperature. These findings are
consistent with previously reported studies [28, 29]. We also
performed the nitrogen (N2) adsorption-desorption isotherm
using surface area analyzer (Quantachrome QuadraWin ©2000-
16). The quantity adsorbed during adsorption/desorption
process with various relative pressure were shown in Figure
1d. It shows type IV hysteresis loop revealing the existence
of mesopore similar to previous literatures [30, 31, 32] . More-
over, the BET (Brunauer, Emmett and Teller) surface area
(SBET) of the CeO2-500 shows a remarkable value of 105.04
m2/g, implying that the material has high surface area.

Figure 2 showcases the SEM images of (a,b) uncalcined
CeO2, and calcined CeO2 at (c) CeO2-500, (d) CeO2-600, (e)
CeO2-700, and (f) CeO2-800. The morphological effects of
calcination temperature on CeO2 nanostructures were also in-
vestigated using the SEM images featured in Figure 2. Images
of the CeO2 sample without calcination treatment (Figure 2a
and 2b) show that the CeO2 has formed into elongated, rod-
like structures with a relatively uniform size and orientation,
indicative of the typical morphology of CeO2 fabricated via
the hydrothermal process [15, 33]. A similar morphology was
also observed for the CeO2 sample after calcinations. For
example, the CeO2-500 (Figure 2c) also shows a relatively
uniform rod-like structure. However, as the calcination tem-
perature were increasing for CeO2-600 to CeO2-800 samples
in which shown in Figure 2d to 2f a more distinctive different
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Figure 3. The UV-Vis spectra of the Congo red (CR) dyes with increasing reaction times are shown for (a) CeO2-500, (b)
CeO2-600, (c) CeO2-700, and CeO2-800 samples. Panel (e) presents photograph images of the discoloration of CR solutions after
increasing contact time with CeO2-500 and CeO2-800. Panel (f) illustrates the changes in CR peak intensity at λ of 498 nm. The

(g) C/C0 and (h) ln(C0/C) vs. reaction time are also depicted.

were observed. Upon calcination, the CeO2 samples exhibit a
distinct morphological evolution from well-defined, rod-like
structures to increasingly sintered and agglomerated forms.
Initially, the uncalcined CeO2 displays discrete and uniform
rods, indicative of a lower temperature synthesis with min-
imal particle fusion. As the calcination temperature rises,
these rods gradually lose their distinctness; they broaden,
fuse, and exhibit smoother edges - a transformation signify-
ing increased diffusion and coalescence of particles [34]. At
the highest temperatures observed, the rods become almost
indistinguishable, with significant agglomeration leading to
a bulkier and denser morphology.

Figures 3a to 3d present the UV-Vis spectroscopy spectra
of Congo red (CR) solutions with varying contact times for all
calcined CeO2 samples. The CR solutions exhibit maximum
absorption at a wavelength of 498 nm, with peak intensities
decreasing as contact time increases, indicating a reduction in
CR concentration. This trend is consistent across all samples,
demonstrating a clear discoloration of the dye upon reaction
or contact, which is visually confirmed (Figure 3e). Initially
red, the CR solutions progressively lighten upon extended
contact with the calcined CeO2. This also agrees with the
UV-Vis spectroscopy investigation previously.

Figure 3f elucidates the concentration changes of the CR
solutions over increasing contact times, assessed by the inten-
sity at the peak wavelength of 498 nm. In the absence of light,
the CR concentration diminishes to varying extents across the
samples, with decreases of over 44%, 46%, 37%, and 32% after
30 minutes of dark contact for CeO2-500, CeO2-600, CeO2-
700, and CeO2-800, respectively. This behavior is attributed
to the adsorptive capabilities of CeO2, as documented in pre-
vious literature [35, 36]. Previous studies state that with rising
calcination temperatures, which typically reduce the surface

area of the materials, the contribution of adsorption decreases
[37, 38].

Under UV irradiation, the CR concentration further de-
clines for all samples, showcasing their photocatalytic activity.
The CR degradation rate (C/C0), defined as the ratio of the
initial CR concentration (C0) to the concentration after a cer-
tain contact time (C), was calculated to evaluate the photocat-
alytic behavior of CeO2 at different calcination temperatures
(Figure 3f). The results reveal an accelerated CR concentra-
tion reduction for CeO2-800 compared to the other samples.
Specifically, after 120 minutes of UV irradiation, the CR con-
centration decreased by approximately 39%, 50%, 47%, and
54% for CeO2-500, CeO2-600, CeO2-700, and CeO2-800, re-
spectively. This increase in photocatalytic performance with
higher calcination temperatures is likely due to the enhanced
crystallinity of the materials, as indicated by the XRD results
[39, 40].

Photocatalytic pseudo-first-order kinetic modeling was
employed to further understand the CR degradation by the
calcined CeO2, based on Equation (1):

ln
C0
C

= kt (1)

where C0, (C), (k), and (t) are the CR initial concentra-
tion (ppm), CR solution concentration at given time (ppm),
the pseudo-first-order constant (min−1), and the contact time
(min), respectively. The kinetic modeling, displayed in Figure
3g, exhibits a linear correlation with high fitting parame-
ters (R2 values) of 0.96832, 0.98445, 0.97148, and 0.98586 for
CeO2-500, CeO2-600, CeO2-700, and CeO2-800, respectively.
Furthermore, the rate constant k shows an increase with the
calcination temperature of the CeO2, implying an enhanced
photocatalytic performance.
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4. CONCLUSION

In this study, CeO2 nanostructures were successfully fabri-
cated through a hydrothermal process followed by subse-
quent calcination at varying temperatures. SEM imaging re-
vealed that all samples maintained a rod-like structure, with
crystallite sizes increasing alongside the calcination tempera-
tures. This pattern sharpening and narrowing with elevated
temperatures indicate enhanced crystallization and an in-
crease in the size of the CeO2 particles. The photocatalytic
capabilities of the calcined CeO2 were assessed through the
degradation of Congo red (CR) dye, demonstrating promising
potential for wastewater treatment applications. The reduc-
tion in CR concentration can be attributed to a combination
of adsorption and photocatalytic degradation mechanisms.
However, it was observed that higher calcination tempera-
tures somewhat diminish adsorption performance, likely due
to alterations in surface charges and a decrease in material
surface area. Conversely, the same increase in calcination tem-
peratures correlated with improved photocatalytic activity,
which can be ascribed to the higher crystallinity of the materi-
als. These findings highlight the dual role of calcination tem-
perature in modulating both the physical characteristics and
functional properties of CeO2 nanostructures. Thus, the opti-
mal calcination temperature for CeO2 nanostructures must
balance these effects to maximize their efficacy in environ-
mental applications, particularly in the domain of pollutant
degradation in water treatment scenarios.
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