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ABSTRACT
Edible Bird’s nest (EBN) is a highly valuable food product due to its rich nutritional
content and potential health benefits. In this study, we investigated the morphology
and diameter of electrospun EBN/PVP nanofibers by exploring different solution
and electrospinning parameters. Smooth, homogeneous, and defect-free nanofibers
were obtained using EBN:PVP ratios ranging from 10:90 to 60:40. Increasing the
concentration of EBN in the solution resulted in fibers with larger diameters. The
fiber diameter was found to decrease with increasing voltage of the electrospinning
process. In addition, increasing the needle-to-collector distance resulted in fibers with
smaller diameters. The FTIR spectrum of EBN/PVP showed a combination of the
spectral characteristics of both components. The EBN/PVP nanofiber blend showed
improved thermal stability, probably due to the interaction between EBN and PVP,
which strengthened the blend structure. EBN/PVP nanofibers with dominant EBN content can be very useful as a matrix to protect bioactive
ingredients from environmental degradation while allowing controlled release.
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1. INTRODUCTION

E dible Bird’s Nest (EBN) is a secretion produced by swiftlets
that has been known and used as a functional food and

natural medicine [1, 2]. EBN has gained popularity for mak-
ing various dietary supplements such as capsules, drinks and
snacks [3, 4]. EBN produced from hardened swiftlet saliva
is rich in nutrients such as protein, essential amino acids,
and various minerals, making it a potential material for the
development of health and wellness products [5, 6, 7]. EBN
has interesting potential to be used as a matrix in the form of
nanofibers, especially because of its rich nutritional content,
biocompatibility, bioactive properties, and multifunctional
applications [5, 7, 8, 9].

Electrospun nanofibers from pure EBN may not be possi-
ble due to the glycoprotein content, which provides bioactive
and nutritional properties. These glycoproteins often have
low solubility in common solvents, making it difficult for
the electrospinning process to produce nanofibers from pure
EBN [10]. To overcome the solubility problem, EBN often
needs to be mixed with other polymers. One of the poly-
mers often used in composites with bioactive materials is
polyvinylpyrrolidone (PVP) [11]. PVP is a biocompatible and
water soluble polymer commonly used in electrospinning
[12, 13]. The use of PVP as a carrier material for EBN can
increase the solubility of EBN in solvents and promote the

formation of uniform and stable nanofibers during electro-
spinning, thus producing nanofibers with higher EBN con-
tent.

Nanofibers can be synthesized by several methods, such
as self-assembly [14], phase separation [15], lyophilization
[16] and electrospinning [17]. However, the electrospinning
technique is the most popular method for fabricating nanofibers
due to its ability to produce fibers with very small diameters
and good control over morphology [18].

Figure 1. ILMI-N101 electrospinning device and it’s
schematic illustration
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Figure 2. SEM images of EBN/PVP nanofibers and their corresponding diameter distributions at various voltages of (a) 10 kV,
(b) 12.5 kV, (c) 15 kV and (d) 17.5 kV.
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Figure 3. The effect of electrospinning operating voltage on
the average diameter of EBN/PVP nanofibers. Statistical
analysis was performed using Tukey’s one-way ANOVA

with p < 0.05, and alphabetical differences indicate
significant differences.

Electrospinning is a versatile technique to produce nanofibers
with high surface-to-volume ratios, small diameters, and ex-
cellent morphology. These unique properties make electro-
spun nanofibers useful in various fields such as biomedical
engineering [17, 19], energy storage [20], and food packaging
[21, 22].

Therefore, this study aims to investigate the optimiza-
tion of electrospinning parameters for producing EBN/PVP
nanofibers. Some parameters are studied, including the EBN
to PVP weight ratio, electrospinning voltage, and collector
distance on the diameter and morphology of the obtained
fibers. Some physical characterizations were also conducted
for the nanofibers, including scanning electron microscopy
(SEM), Fourier transform infrared (FTIR) spectroscopy, and
thermal analysis.

2. METHODS

2.1 Materials for Precursor Solution
EBN was obtained from a local market in Indonesia. Mean-
while, polyvinylpyrrolidone (PVP) with an average molec-
ular weight of ~360,000 g/mol and absolute ethanol were
obtained from Sigma-Aldrich Chemicals. The precursor solu-
tion was prepared by dissolving the PVP in ethanol to form
a homogeneous solution with polymer concentration of 10
wt%. Then, EBN powder was added to the PVP solution at
various EBN:PVP weight ratios of 10:90, 20:80, 30:70, 40:60,
50:50, 60:40, 70:30, 80:20, 90:10, and 100:0.

2.2 Electrospinning Process
Nanofiber were produced using an electrospinning machine
(ILMI-N101 Electrospinning, Indonesia), as shown in Figure 1.
The precursor solution was dispensed using a syringe pump
at a constant flow rate of 0.8 mL h−1. A high voltage power
supply was connected to the syringe needle which will draw
the solution jet toward a grounded plate collector, forming
fine nanofibers. The fabrication process was conducted at a
constant temperature of 26 ◦C and relative humidity of 55%.
Some parameters were varied for the electrospinning process,
including the EBN ratio in the precursor solution, working

voltage, and collector distance.

2.3 Nanofiber’s Characterization
The morphology and diameter of the nanofibers were ana-
lyzed using Scanning Electron Microscopy (SEM, SU3500).
The diameter distribution was determined from SEM im-
ages using ImageJ software (National Institutes of Health,
Bethesda, MD, USA) [23]. The functional groups of EBN/PVP
nanofiber samples was investigated using Fourier Transform
Infrared Spectroscopy (FTIR, Bruker, Alpha Platinum ATR
A220/D-01) in wave number range of 500 to 4500 cm−1. Ther-
mal characterization was also performed to determine the
thermal stability of the nanofiber samples using thermogravi-
metric and differential thermal analysis (TG/DTA, STA7300,
Hitachi). The TG/DTA measurements were performed using
the temperature range of 30 ◦C to 600 ◦C, and heating rate of
10 ◦C/min. The statistical analysis was also performed to the
samples using Tukey’s one-way ANOVA with p < 0.05 [24].
Minitab software version 17 (Minitab, LLC, State College, PA,
USA) was used for this statistical analysis.

3. RESULTS AND DISCUSSION

3.1 Spinnability of Precursor Solution with Various EBN/PVP
Ratio

To evaluate the spinnability of the precursor solutions, vari-
ous weight ratios of EBN to PVP were prepared. The precur-
sor solutions were prepared with various EBN:PVP weight ra-
tios of 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10,
100:0. Each solution was processed at a constant voltage of
15 kV, a fixed collector distance of 20 cm, and a constant flow
rate of 0.8 mL h−1. The results indicate that smooth, beads
free nanofibers were successfully produced from solutions
with EBN:PVP ratio of 10:90, to 60:40. The smooth morphol-
ogy of nanofibers can be obtained by careful selection of the
EBN/PVP ratio. It is likely that the ratio between 10:90 and
60:40 provide a favorable balance of the solution conductivity
and viscosity for successful electrospinning, resulting in the
formation of uniform, defect-free nanofibers.

In contrast, nanofibers were not formed for the EBN:PVP
ratio of 70:30, 80:20, 90:10, 100:0. This suggests that EBN
alone lacks sufficient electrospinnability and must be blended
with polymeric additives such as PVP. The inability to form
fibers at higher EBN content may be attributed to excessive
solution viscosity, which impedes the electrospinning process
[10]. Since maximizing the functional benefits of EBN is es-
sential, nanofiber samples with the highest EBN content were
selected for further optimization of electrospinning process
parameters. Accordingly, the EBN:PVP ratio of 60:40 was cho-
sen as the precursor formulation for subsequent optimization
studies.

3.2 Effect of Process Parameters on the Nanofibers Diame-
ter

The diameter of nanofibers produced by electrospinning is
highly dependent on the electrospinning voltage. Figure 2
shows the morphology and diameter distribution of EBN/PVP
nanofibers (EBN:PVP ratio of 60:40) obtained from various
electrospinning voltages at constant solution flow rate of 0.8
mL h−1, and a needle-to-collector distance of 20 cm. Gen-
erally, as the voltage increases, the average diameter of the
nanofiber decreases as indicated by Figure 3. Statistical anal-
ysis using Tukey’s test, represented by different alphabeti-
cal groupings, further confirms the significant differences in
fiber diameters obtained at varying electrospinning voltages.
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Figure 4. SEM images of EBN/PVP nanofibers and their corresponding diameter distributions fabricated using various collector
distances of (a) 18 cm, (b) 20 cm, (c) 22 cm, (d) 24 cm.
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Figure 5. Effect of collector distance on the average diameter
of EBN/PVP nanofibers. Statistical analysis was performed

using Tukey’s one-way ANOVA with p < 0.05, and
alphabetical differences indicate significant differences.

Figure 6. FTIR plots for EBN, PVP, and EBN/PVP (60:40)
samples.

These results are consistent with previous studies on electro-
spinning of biopolymers at different voltages [25, 26]. The
decrease of nanofiber diameter with increasing voltage can
be attributed to the increase of electric force acting on the
polymer solution during electrospinning [27, 28, 29]. This
force causes the solution jet to stretch and form whipping
mode before reaching collector [30]. Stronger electrostatic
forces cause greater stretching on the polymer jet, resulting
in a more reduction in nanofiber diameter [31, 32].

These results indicate that proper control of the electro-
spinning voltage is essential to produce EBN/PVP nanofibers
with the desired diameter. While higher voltage may result in
smaller diameter nanofibers, it may also increase the possibil-
ity of beads formation and fiber discontinuity. Therefore, the
optimal electrospinning voltage should be carefully selected
based on the desired nanofiber morphology and diameter.

In addition to the voltage, the distance between the needle
and the collector affects the size of the EBN/PVP nanofiber
produced during the electrospinning process. Figure 4 shows
the effect of varying distance of the collector on the diameter
distribution of the EBN/PVP nanofiber. The experiment used

fixed voltage of 15 kV and solution flow rate of 0.8 mL h−1

for EBN:PVP ratio of 60:40. Figure 5 shows that the larger the
distance between the needle and collector during electrospin-
ning, the smaller the average diameter of the nanofiber. This
is in agreement with research conducted by Z AL-Hazeem,
(2020), which shows that by increasing the distance between
the needle and the collector, a smaller fiber diameter and a
more uniform size distribution can be obtained [33].

A shorter needle-to-collector distance can lead to larger
fiber diameters, as the jet has less time to undergo full elon-
gation during the stretching process [33]. The jet may reach
the collector before sufficient stretching occurs, resulting in
thicker fibers. Additionally, the reduced distance may prevent
complete solvent evaporation, causing the fibers to remain
wet upon deposition and potentially leading to fused fibers.
Fused fibers often appear flattened and may resemble very
large fibers in SEM images, potentially leading to misinter-
pretation of fiber diameter. In this case, the SEM image on
Figure 4(a) indicates the fused fiber morphology with large
fiber diameter.

3.3 FTIR Analysis
The FTIR spectra of PVP, EBN, and EBN/PVP nanofibers are
presented in Figure 6. The FTIR spectrum of EBN displays
several characteristic peaks that reflect its complex chemi-
cal composition [34]. The presence of proteins, particularly
glycoproteins and sialoproteins, is indicated by the appear-
ance of amide I and II bands, as well as broad O-H and N-H
stretching vibrations. Carbohydrate components, such as
sialic acid, are associated with pronounced C-O stretching
peaks [35]. A broad peak at 3448.72 cm−1 corresponds to
hydroxyl groups (O-H), which may be attributed to moisture
content and the hydrophilic nature of protein constituents like
sialoproteins and glycoproteins [36, 37, 38]. The absorption
band at 2926.01 cm−1 represents aliphatic C–H stretching,
commonly associated with the carbon chains of amino acids
and lipids [35, 38, 34]. The peak at 2372.44 cm−1 indicates the
presence of a triple bond between carbon and nitrogen (C≡N).
A peak at 1242.16 cm−1 is attributed to the stretching of car-
bon–nitrogen triple bonds (C≡N). Peaks at 1242.16 cm−1

and 1660.71 cm−1 are indicative of C–N and C=O functional
groups, which are fundamental to protein and amino acid
structures. The band at 1242.16 cm−1 also reflects C–O stretch-
ing associated with carbohydrate residues such as sialic acid
and glucosamine found in EBN [39, 40, 41, 42, 43, 44].

The FTIR spectrum of PVP reveals several well-defined
peaks corresponding to its polymeric structure [45, 46, 47]. A
strong absorption at 1658.78 cm−1 represents the C=O stretch-
ing of the amide group, characteristic of the pyrrolidone ring
in PVP [44, 47, 48]. The band at 3429.43 cm−1 indicates the
presence of hydroxyl (O–H) groups, a reflection of PVP’s
hydrophilic nature [47, 49]. The peak at 2924.09 cm−1 corre-
sponds to aliphatic C–H stretching, while the peak at 2372.44
cm−1 indicates the presence of (C≡N) triple bonds. The ab-
sorption at 1436.97 cm−1 is associated with C–N stretching,
confirming the presence of amide linkages within the poly-
mer backbone [47, 50]. Additionally, a peak at 1033.85 cm−1

suggests the presence of C–O bonds, consistent with ether
groups in the polymer structure [12, 47].

The FTIR spectrum of the EBN/PVP nanofibers displays
a combination of characteristic features from both EBN and
PVP, indicating successful blending of the two components.
A broad peak corresponding to O–H stretching is observed,
which may originate from moisture, hydroxyl groups in EBN,
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Figure 7. Thermal graphs of TG, DTG, and DTA for (a) pure EBN, (b) PVP powder, and (c) EBN/PVP nanofiber.

or hydrogen bonding between EBN and PVP. The C=O stretch-
ing band confirms the presence of carbonyl groups derived
from both the amide bonds in PVP and the protein content of
EBN. A peak at 2954.95 cm−1 is attributed to aliphatic C–H
bonds, indicative of PVP’s carbon backbone. Furthermore,
the absorption bands at 1442.75 cm−1 and 1242.16 cm−1 cor-
respond to C–N and C–O stretching, respectively, reflecting
the amide and ether structures contributed by PVP and the
carbohydrate content of EBN [46, 51].

3.4 Thermal Analysis
Thermal analysis was performed on EBN powder, PVP pow-
der, and electrospun EBN/PVP composite nanofibers to eval-
uate their thermal stability and decomposition behavior. The
results are presented as thermogravimetric (TG), derivative
thermogravimetric (DTG), and differential thermal analysis
(DTA) curves, which collectively provide insights into mass
loss, decomposition kinetics, and associated enthalpy changes
during thermal degradation [52, 53]. Figure 7 illustrates the
thermal profiles of pure EBN, pure PVP, and the EBN/PVP
nanofibers, enabling direct comparison of their thermal per-
formance.

Figure 7(a) presents the TG curve of EBN powder. A sub-
stantial weight loss is observed in the temperature range of
approximately 250◦C to 500◦C, indicating the thermal decom-
position of organic constituents [54, 55, 56, 57]. The corre-
sponding DTG curve exhibits a prominent peak at around
295◦C, representing the temperature at which the maximum
rate of decomposition occurs. Additionally, the DTA curve
reveals an endothermic peak, suggesting a decomposition
process or a possible phase transition. These findings indi-
cate that EBN powder is relatively susceptible to thermal
degradation at moderate temperatures.

Figure 7(b) illustrates the thermal behavior of pure PVP

powder. The TG curve demonstrates that PVP exhibits supe-
rior thermal stability, with significant weight loss initiating
only above 400◦C. A prominent DTG peak is observed at ap-
proximately 435◦C, indicating the temperature at which the
maximum decomposition rate occurs [58]. The DTA curve
also displays an endothermic peak corresponding to the de-
composition process. These results confirm that PVP pos-
sesses high thermal stability and is capable of withstand-
ing elevated temperatures without substantial degradation
[59, 60].

Figure 7(c) shows the TG curve of the electrospun EBN/PVP
nanofiber composite, revealing two distinct phases of weight
loss: the first occurring between 200◦C and 350◦C, and the
second above 450◦C [61, 62]. The corresponding DTG peaks
within these ranges indicate a two-step decomposition pro-
cess, which can be attributed to the sequential degradation of
EBN and PVP components, respectively. The DTA curve also
displays two endothermic peaks, supporting the occurrence
of gradual thermal transitions resulting from the composite
nature of the material. These findings suggest that, although
each component retains its inherent thermal behavior, the
EBN/PVP nanofibers exhibit enhanced thermal stability com-
pared to pure EBN, likely due to the stabilizing effect of the
PVP matrix [63, 64, 65].

4. CONCLUSION

The electrospun EBN/PVP nanofibers were successfully syn-
thesized. Smooth, homogeneous, and defect-free fibers were
obtained from precursor solutions with EBN/PVP ratios rang-
ing from 10:90 to 60:40. The fiber diameter decreased with in-
creasing electrospinning voltage and collector distance. FTIR
analysis confirmed the successful synthesis of EBN/PVP
nanofibers by displaying characteristic peaks from both pure
PVP and EBN. Thermal analysis indicated enhanced ther-
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mal stability of EBN/PVP nanofibers compared to pure EBN.
Owing to their favorable morphology, stability, and biocom-
patibility, these nanofibers hold promising potential for future
applications in functional food delivery systems, nutraceu-
tical encapsulation, or biomedical fields where controlled
release and protection of bioactive compounds are essential.
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