Felix R.M. Hamonangan M , Hadi Teguh Yudistira ORCID icon , Fitrah Qalbina , Adhitya Gandaryus saputro , Amir Faisal

Abstract

This study aims to use the hand-painting method in designing and fabricating a metamaterial based on a circular shape that exhibits a negative refractive index over the microwave spectrum. Hand painting is a simple and inexpensive fabrication method. This study applies silver ink as a periodic conductor to glossy paper as the dielectric substrate. The spectrum of investigation in this study is 3–6 GHz, and the experiment results are compared with the simulation results. The slight error obtained between transmission results from the simulation and the experiments reflects limitations in the fabrication methods used. Overall, the experiment results have a similar trend to the simulation results. The electrical properties of the metamaterial are retrieved from the transmission and reflection simulation results. The simulation results are employed instead of the experimental results because of the fluctuating data provided by the latter. The refractive index presents a negative value at 3–3.6 GHz.

Keywords:
electrical properties, hand painting, metamaterial, negative refractive index, circular

Main Article Content

Article Details

How to Cite
Using hand painting in the fabrication of a negative refractive index metamaterial based on circular shape with paper as the dielectric. (2024). Greensusmater, 1(1), 15-19. https://doi.org/10.62755/greensusmater.2024.1.1.15-19

How to Cite

Using hand painting in the fabrication of a negative refractive index metamaterial based on circular shape with paper as the dielectric. (2024). Greensusmater, 1(1), 15-19. https://doi.org/10.62755/greensusmater.2024.1.1.15-19

References

Yuandan Dong, T. Itoh, Metamaterial-Based Antennas, Proceedings of the IEEE 100 (7) (2012) 2271–2285. https://doi.org/10.1109/JPROC.2012.2187631.

M. Kim, J. Rho, Metamaterials and imaging, Nano Convergence 2 (1) (2015) 22. https://doi.org/10.1186/s40580-015-0053-7.

J. Pendry, Negative refraction, Contemporary Physics 45 (3) (2004) 191–202. https://doi.org/10.1080/00107510410001667434.

K. Liu, R. Zhang, Y. Liu, X. Chen, K. Li, E. Pickwell-Macpherson, Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor, Biomedical Optics Express 12 (3) (2021) 1559. https://doi.org/10.1364/BOE.418859.

S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, Y. Chen, Z. Wang, Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen, IEEE Journal of Selected Topics in Quantum Electronics 27 (4) (2021) 1–7. https://doi.org/10.1109/JSTQE.2020.3038308.

H. T. Yudistira, L. Y. Ginting, K. Kananda, High absorbance performance of symmetrical split ring resonator (SRR) terahertz metamaterial based on paper as spacer, Materials Research Express 6 (2) (2018) 025804. https://doi.org/10.1088/2053-1591/aaf27e.

D. Viet, N. Hien, P. Tuong, N. Minh, P. Trang, L. Le, Y. Lee, V. Lam, Perfect absorber metamaterials: Peak, multi-peak and broadband absorption, Optics Communications 322 (2014) 209–213. https://doi.org/10.1016/j.optcom.2014.02.037.

A. Palomares-Caballero, C. Molero, A. Alex-Amor, I. Parellada-Serrano, F. Gamiz, P. Padilla, J. Valenzuela-Valdes, Metamaterial-Based Reconfigurable Intelligent Surface: 3-D Meta-Atoms Controlled by Graphene Structures, preprint (Apr. 2021). https://doi.org/10.36227/techrxiv.14479290.v1. URL https://www.techrxiv.org/doi/full/10.36227/techrxiv.14479290.v1

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C.-g. Choi, M. Choi, D. Byun, Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing, Applied Physics Letters 103 (21) (2013) 211106. https://doi.org/10.1063/1.4832197.

H. T. Yudistira, A. P. Tenggara, S. S. Oh, V. Nguyen, M. Choi, C.-g. Choi, D. Byun, High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index, Journal of Micromechanics and Microengineering 25 (4) (2015) 045006. https://doi.org/10.1088/0960-1317/25/4/045006.

L. Yin, J. Doyhamboure-Fouquet, X. Tian, D. Li, Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials, Composites Part B: Engineering 132 (2018) 178–187. https://doi.org/10.1016/j.compositesb.2017.09.003.

Hu Tao, N. I. Landy, K. Fan, A. C. Strikwerda, W. J. Padilla, R. D. Averitt, Xin Zhang, Flexible terahertz metamaterials: towards a terahertz metamaterial invisible cloak, in: 2008 IEEE International Electron Devices Meeting, IEEE, San Francisco, CA, USA, 2008, pp. 1–4. https://doi.org/10.1109/IEDM.2008.4796673. URL http://ieeexplore.ieee.org/document/4796673/

H. T. Yudistira, M. Asril, High figure of merit cylinder‐shaped negative refractive index metamaterial based on paper as dielectric material, Micro & Nano Letters 16 (7) (2021) 387–391. https://doi.org/10.1049/mna2.12062.

H. T. Yudistira, S. Liu, T. J. Cui, H. Zhang, Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure, Beilstein Journal of Nanotechnology 9 (2018) 1437–1447. https://doi.org/10.3762/bjnano.9.136.

T. Ramachandran, M. R. Iqbal Faruque, M. T. Islam, Left-handed Circular-Shaped Compact Metamaterial for X- and Ku-Band applications, Journal of Physics: Conference Series 1529 (5) (2020) 052021. https://doi.org/10.1088/1742-6596/1529/5/052021.

O. B. Ayop, M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, R. Dewan, TRIPLE BAND CIRCULAR RING-SHAPED METAMATERIAL ABSORBER FOR X-BAND APPLICATIONS, Progress In Electromagnetics Research M 39 (2014) 65–75. https://doi.org/10.2528/PIERM14052402.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Metamaterials on Paper as a Sensing Platform, Advanced Materials 23 (28) (2011) 3197–3201. https://doi.org/10.1002/adma.201100163.

A. Sadeqi, H. R. Nejad, S. Sonkusale, Low-cost metamaterial-on-paper chemical sensor, Optics Express 25 (14) (2017) 16092. https://doi.org/10.1364/OE.25.016092.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, Y. Lee, Ultrathin microwave metamaterial absorber utilizing embedded resistors, Journal of Physics D: Applied Physics 50 (40) (2017) 405110. https://doi.org/10.1088/1361-6463/aa82f4.

E. L. Chuma, Y. Iano, G. Fontgalland, L. L. B. Roger, H. Loschi, PCB-integrated non-destructive microwave sensor for liquid dielectric spectroscopy based on planar metamaterial resonator, Sensors and Actuators A: Physical 312 (2020) 112112. https://doi.org/10.1016/j.sna.2020.112112.

P. Zuo, T. Li, M. Wang, H. Zheng, E.-P. Li, Miniaturized Polarization Insensitive Metamaterial Absorber Applied on EMI Suppression, IEEE Access 8 (2020) 6583–6590. https://doi.org/10.1109/ACCESS.2019.2957308.

A. Rasad, H. T. Yudistira, F. Qalbina, A. G. Saputro, A. Faisal, Multilayer flexible metamaterials based on circular shape with negative refractive index at microwave spectrum, Sensors and Actuators A: Physical 332 (2021) 113208. https://doi.org/10.1016/j.sna.2021.113208.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Physical Review E 70 (1) (2004) 016608. https://doi.org/10.1103/PhysRevE.70.016608.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, Y. P. Lee, Single- and double-negative refractive indices of combined metamaterial structure, Journal of Applied Physics 106 (5) (2009) 053109. https://doi.org/10.1063/1.3213097.

Most read articles by the same author(s)