Effect of calcination temperature on the performance of hydrothermally grown cerium dioxide (CeO2) nanorods for the removal of Congo red dyes
Main Article Content
Abstract
This study investigates the transformation of CeO2 nanostructures through various calcination temperatures and their subsequent impact on morphological, structural, and photocatalytic properties. X-ray diffraction (XRD) analysis reveals the presence of cerium oxycarbonate in the uncalcined samples, transitioning to a face centered cubic CeO2 phase post-calcination at 500°C. The scanning electron microscopy (SEM) imaging delineates a morphological evolution from distinct, rod-like structures in the uncalcined state to sintered, agglomerated forms as calcination temperatures ascend from 500°C to 800°C. The crystallite size, calculated using Scherrer's Equation, displayed a proportional increase with temperature. The photocatalytic degradation of Congo red dye under UV light was analyzed using UV-Vis spectroscopy, with the calcined samples exhibiting varying degrees of adsorption and photocatalytic activity. The study found that higher calcination temperatures correlate with increased photocatalytic performance, potentially due to enhanced crystallinity. This assertion is supported by pseudo-first-order kinetic modeling, indicating improved photocatalytic efficiency with higher calcination temperatures, underlined by increasing rate constants. These findings underscore the intricate relationship between calcination-induced morphological and structural changes and the photocatalytic prowess of CeO2 nanostructures.
Article Details
References
[1] Ahmadi, M. Hajilou, S. Zavari, S. Yaghmaei, A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters, Journal of Cleaner Production 382 (2023) 134967. https://doi.org/10.1016/j.jclepro.2022.134967.
[2] M. F. Lanjwani, M. Tuzen, M. Y. Khuhawar, T. A. Saleh, Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review, Inorganic Chemistry Communications 159 (2024) 111613. https://doi.org/10.1016/j.inoche.2023.111613.
[3] V. Gadore, S. R. Mishra, M. Ahmaruzzaman, Metal sulphides and their heterojunctions for photocatalytic degradation of organic dyes-A comprehensive review, Environmental Science and Pollution Research 30 (39) (2023) 90410–90457. https://doi.org/10.1007/s11356-023-28753-w.
[4] T. Taher, Z. Yu, E. K. A. Melati, A. Munandar, R. Aflaha, K. Triyana, Y. G. Wibowo, K. Khairurrijal, A. Lesbani, A. Rianjanu, Enabling dual-functionality material for effective anionic and cationic dye removal by using Nb2O5/MgAl-LDH nanocomposites, Journal of Hazardous Materials Letters 5 (2024) 100103. https://doi.org/10.1016/j.hazl.2024.100103.
[5] F. T. Geldasa, M. A. Kebede, M. W. Shura, F. G. Hone, Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review, RSC Advances 13 (27) (2023) 18404–18442. https://doi.org/10.1039/D3RA01505J.
A. Krishnan, A. Swarnalal, D. Das, M. Krishnan, V. S. Saji, S. Shibli, A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants, Journal of Environmental Sciences 139 (2024) 389–417. https://doi.org/10.1016/j.jes.2023.02.051.
[6] S. Yadav, K. Shakya, A. Gupta, D. Singh, A. R. Chandran, A. Varayil Aanappalli, K. Goyal, N. Rani, K. Saini, A review on degradation of organic dyes by using metal oxide semiconductors, Environmental Science and Pollution Research 30 (28) (2022) 71912–71932. https://doi.org/10.1007/s11356-022-20818-6.
A. Rianjanu, K. D. P. Marpaung, E. K. A. Melati, R. Aflaha, Y. G. Wibowo, I. P. Mahendra, N. Yulianto, J. Widakdo, K. Triyana, H. S. Wasisto, T. Taher, Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb2O5@PAN/PVDF/ANO composite nanofibers, Nano Materials Science (2023) S2589965123000673https://doi.org/10.1016/j.nanoms.2023.10.006.
[7] T. Wu, R.-t. Guo, C.-f. Li, W.-g. Pan, Recent progress of CeO2-based catalysts with special morphologies applied in air pollutants abatement: A review, Journal of Environmental Chemical Engineering 11 (1) (2023) 109136. https://doi.org/10.1016/j.jece.2022.109136.
[8] S.-Y. Ahn, W.-J. Jang, J.-O. Shim, B.-H. Jeon, H.-S. Roh, CeO 2 -based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties, Catalysis Reviews (2023) 1–84https://doi.org/10.1080/01614940.2022.2162677.
[9] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic Applications of CeO 2 -Based Materials, Chemical Reviews 116 (10) (2016) 5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603.
[10] Yang, Y. Lu, L. Zhang, Z. Kong, T. Yang, L. Tao, Y. Zou, S. Wang, Defect Engineering on CeO 2 ‐Based Catalysts for Heterogeneous Catalytic Applications, Small Structures 2 (12) (2021) 2100058. https://doi.org/10.1002/sstr.202100058.
[11] M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, Synthesis and characterization of CeO 2 nanoparticles via hydrothermal route, Journal of Industrial and Engineering Chemistry 21 (2015) 1301–1305. https://doi.org/10.1016/j.jiec.2014.05.046.
[12] M. Lin, Z. Y. Fu, H. R. Tan, J. P. Y. Tan, S. C. Ng, E. Teo, Hydrothermal Synthesis of CeO 2 Nanocrystals: Ostwald Ripening or Oriented Attachment?, Crystal Growth & Design 12 (6) (2012) 3296–3303. https://doi.org/10.1021/cg300421x.
A. Rianjanu, A. S. P. Mustamin, E. K. A. Melati, R. Aflaha, N. I. Khamidy, M. Utami, K. Khairurrijal, K. Triyana, F. F. Abdi, H. S. Wasisto, T. Taher, Photocatalytic degradation of aqueous Congo red dye pollutants by rare-earth metal oxide (CeO2) nanorods, Colloids and Surfaces A: Physicochemical and Engineering Aspects 682 (2024) 132919. https://doi.org/10.1016/j.colsurfa.2023.132919.
[13] X. Yang, Y. Liu, J. Li, Y. Zhang, Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity, Materials Letters 241 (2019) 76–79. https://doi.org/10.1016/j.matlet.2019.01.006.
[14] T. Velempini, E. Prabakaran, K. Pillay, Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review, Materials Today Chemistry 19 (2021) 100380. https://doi.org/10.1016/j.mtchem.2020.100380.
[15] Y. Ren, Z. Ma, P. G. Bruce, Ordered mesoporous metal oxides: synthesis and applications, Chemical Society Reviews 41 (14) (2012) 4909. https://doi.org/10.1039/c2cs35086f.
[16] S. W. Choi, J. Kim, Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent, ACS Omega 6 (40) (2021) 26477–26488. https://doi.org/10.1021/acsomega.1c03700.
[17] S. K. Meher, G. Ranga Rao, Tuning, via Counter Anions, the Morphology and Catalytic Activity of CeO2 Prepared under Mild Conditions, Journal of Colloid and Interface Science 373 (1) (2012) 46–56. https://doi.org/10.1016/j.jcis.2011.09.050.
A. O. Santos, L. D. Martins, J. H. S. Mezavila, J. D. Serna, N. R. Checca, A. V. Soares, C. M. Fernandes, E. A. Ponzio, J. C. M. Silva, O. C. Alves, Temperature dependence of ferromagnetic behavior in ceria nanoparticles with cubic morphology, Journal of Alloys and Compounds 965 (2023) 171300. https://doi.org/10.1016/j.jallcom.2023.171300.
[18] Dos Santos, T. Dantas, J. Costa, L. Souza, J. Soares, V. Caldeira, A. Araújo, A. Santos, Formation of CeO2 nanotubes through different conditions of hydrothermal synthesis, Surfaces and Interfaces 21 (2020) 100746. https://doi.org/10.1016/j.surfin.2020.100746.
[19] X. Yang, Y. Liu, J. Li, Y. Zhang, Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity, Materials Letters 241 (2019) 76–79. https://doi.org/10.1016/j.matlet.2019.01.006.
[20] H. Li, F. Meng, J. Gong, Z. Fan, R. Qin, Structural, morphological and optical properties of shuttle-like CeO2 synthesized by a facile hydrothermal method, Journal of Alloys and Compounds 722 (2017) 489–498. https://doi.org/10.1016/j.jallcom.2017.06.156.
[21] Li, M. Cui, Q. Sun, W. Dong, Y. Zheng, K. Tsukamoto, B. Chen, W. Tang, Nanostructures and optical properties of hydrothermal synthesized CeOHCO3 and calcined CeO2 with PVP assistance, Journal of Alloys and Compounds 504 (2) (2010) 498–502. https://doi.org/10.1016/j.jallcom.2010.05.151.
[22] E. Nurfani, M. P. Ali, A. Rianjanu, L. Nulhakim, M. S. Anrokhi, G. T. Kadja, Effect of solution molarity on the optical and photocatalytic properties of sprayed ZnO film, Materials Chemistry and Physics 309 (2023) 128412. https://doi.org/10.1016/j.matchemphys.2023.128412.
[23] E. Nurfani, L. Antika, M. S. Anrokhi, W. S. Sipahutar, A. Rianjanu, B. A. Wahjoedi, UV sensitivity enhancement in ZnO:Cu films through simple post-annealing treatment, Physica B: Condensed Matter 628 (2022) 413603. https://doi.org/10.1016/j.physb.2021.413603.
[24] J. Zheng, Z. Wang, Z. Chen, S. Zuo, Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion, Journal of Rare Earths 39 (7) (2021) 790–796. https://doi.org/10.1016/j.jre.2020.08.009.
A. A. Sery, W. A. Mohamed, F. Hammad, M. M. Khalil, H. Farag, Synthesis of pure and doped SnO2 and NiO nanoparticles and evaluation of their photocatalytic activity, Materials Chemistry and Physics 275 (2022) 125190. https://doi.org/10.1016/j.matchemphys.2021.125190.
[25] T. Taher, S. Maulana, N. Mawaddah, A. Munandar, A. Rianjanu, A. Lesbani, Low-temperature hydrothermal carbonization of activated carbon microsphere derived from microcrystalline cellulose as carbon dioxide (CO2) adsorbent, Materials Today Sustainability 23 (2023) 100464. https://doi.org/10.1016/j.mtsust.2023.100464.
[26] E. Pradeepa, Y. A. Nayaka, Cerium oxide nanoparticles via gel-combustion for electrochemical investigation of pantoprazole in the presence of epinephrine, Journal of Materials Science: Materials in Electronics 33 (23) (2022) 18374–18388. https://doi.org/10.1007/s10854-022-08692-x.
[27] R. Rao, P. Jin, Y. Huang, C. Hu, X. Dong, Y. Tang, F. Wang, F. Luo, S. Fang, A surface control strategy of CeO2 nanocrystals for enhancing adsorption removal of Congo red, Colloid and Interface Science Communications 49 (2022) 100631. https://doi.org/10.1016/j.colcom.2022.100631.
[28] G. Ashok Reddy, H. Shaik, K. N. Kumar, H. D. Shetty, R. I. Jafri, R. Naik, J. Gupta, S. A. Sattar, B. Doreswamy, Synthesis, characterizations, and electrochromic studies of WO3 coated CeO2 nanorod thin films for smart window applications, Physica B: Condensed Matter 647 (2022) 414395. https://doi.org/10.1016/j.physb.2022.414395.
A. El-Shaer, M. Abdelfatah, K. R. Mahmoud, S. Momay, M. Eraky, Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity, Journal of Alloys and Compounds 817 (2020) 152799. https://doi.org/10.1016/j.jallcom.2019.152799.
B. Hu, X. Hu, R. Li, Y. Xing, MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight, Journal of Hazardous Materials 385 (2020) 121599. https://doi.org/10.1016/j.jhazmat.2019.121599.
[29] S. J. Olusegun, N. D. Mohallem, Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles, Environmental Pollution 260 (2020) 114019. https://doi.org/10.1016/j.envpol.2020.114019.
[30] Q. Sun, X. Hu, S. Zheng, J. Zhang, J. Sheng, Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4diatomite hybrid photocatalyst for improving reduction of Cr(vi), Environmental Pollution 245 (2019) 53–62. https://doi.org/10.1016/j.envpol.2018.10.121.
[31] P. Nandi, D. Das, Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects, Applied Surface Science 465 (2019) 546–556. https://doi.org/10.1016/j.apsusc.2018.09.193.
[32] S. Jian, Z. Tian, J. Hu, K. Zhang, L. Zhang, G. Duan, W. Yang, S. Jiang, Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology, Advanced Powder Materials 1 (2) (2022) 100004. https://doi.org/10.1016/j.apmate.2021.09.004.
A. Sadeghzadeh-Attar, Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures, Solar Energy Materials and Solar Cells 183 (2018) 16–24. https://doi.org/10.1016/j.solmat.2018.03.046.