Synthesis and Characterization of Electrospun Edible Bird’s Nest/Polyvinylpyrrolidone Nanofibers
Main Article Content
Abstract
Edible Bird's nest (EBN) is a highly valuable food product due to its rich nutritional content and potential health benefits. In this study, we investigated the morphology and diameter of electrospun EBN/PVP nanofibers by exploring different solution and electrospinning parameters. Smooth, homogeneous, and defect-free nanofibers were obtained using EBN:PVP ratios ranging from 10:90 to 60:40. Increasing the concentration of EBN in the solution resulted in fibers with larger diameters. The fiber diameter was found to decrease with increasing voltage of the electrospinning process. In addition, increasing the needle-to-collector distance resulted in fibers with smaller diameters. The FTIR spectrum of EBN/PVP showed a combination of the spectral characteristics of both components. The EBN/PVP nanofiber blend showed improved thermal stability, probably due to the interaction between EBN and PVP, which strengthened the blend structure. EBN/PVP nanofibers with dominant EBN content can be very useful as a matrix to protect bioactive ingredients from environmental degradation while allowing controlled release.
Article Details
References
[1] D. Sri Wahyuni, ULASAN SARANG BURUNG WALET SEBA- GAI PANGAN FUNGSIONAL, Acta VETERINARIA Indonesiana 9 (3) (2021) 201–214. https://doi.org/10.29244/avi.9.3.201-214.
[2] T. H. Lee, W. A. Wani, C. H. Lee, K. K. Cheng, S. Shreaz, S. Wong,N. Hamdan, N. A. Azmi, Edible Bird’s Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia–A Review, Frontiers in Pharmacology 12 (2021) 626233. https://doi.org/10.3389/fphar.2021.626233.
[3] Q. W. S. Lai, M. S. S. Guo, K. Q. Wu, Z. Liao, D. Guan, T. T. Dong, P. Tong, K. W. K. Tsim, Edible Bird’s Nest, an Asian Health Food Supplement, Possesses Moisturizing Effect by Reg- ulating Expression of Filaggrin in Skin Keratinocyte, Frontiers in Pharmacology 12 (2021) 685982. https://doi.org/10.3389/ fphar.2021.685982.
[4] I. Fatmawati S, Haeruddin, W. O. Mulyana, Uji Aktivitas Antiok- sidan Ekstrak Etil Asetat Daun Belimbing Wuluh (Aveerrhoa bilimbi L.) dengan Metode DPPH, Sains: Jurnal Kimia dan Pendidikan Kimia 12 (1) (2023) 41–49. https://doi.org/10. 36709/sains.v12i1.31.
[5] N. Daud, S. Mohamad Yusop, A. S. Babji, S. J. Lim, S. R. Sarbini, T. Hui Yan, Edible Bird’s Nest: Physicochemical Properties, Production, and Application of Bioactive Extracts and Gly- copeptides, Food Reviews International 37 (2) (2021) 177–196. https://doi.org/10.1080/87559129.2019.1696359.
[6] M. C. Quek, N. L. Chin, Y. A. Yusof, C. L. Law, S. W. Tan, Char- acterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physic- ochemical properties and antioxidant activities, Food Research International 109 (2018) 35–43. https://doi.org/10.1016/j. foodres.2018.03.078.
[7] Z. Hamzah, N. H. Ibrahim, NUTRITIONAL PROPERTIES OF EDIBLE BIRD NEST, Journal of Asian Scientific Research (2013).
[8] Evaluation of Nitrite Concentration in Edible Bird’s Nest (White, Yellow, Orange, and Red Blood), Makara Journal of Science 26 (1) (Mar. 2022). https://doi.org/10.7454/mss.v26i1.1311.
[9] X. Liu, X. Song, D. Gou, H. Li, L. Jiang, M. Yuan, M. Yuan, A polylactide based multifunctional hydrophobic film for tracking evaluation and maintaining beef freshness by an electrospinning technique, Food Chemistry 428 (2023) 136784. https://doi.org/10.1016/j.foodchem.2023.136784.
[10] Y. A. Rezeki, D. Harjunowibowo, P. Indrayudha, M. Alauhdin, I. K. Fitri, L. D. Setyaningsih, F. Udaneni, ELECTROSPINNING DAN ELECTROSPRAY: TEKNIK PABRIKASI NANOFIBER DAN NANOPARTIKEL.
[11] M. Ali, S. Mir, L. I. Atanase, O.-U.-R. Abid, M. Kazi, Chitosan–PVA–PVP/nano-clay composite: a promising tool for controlled drug delivery, RSC Advances 14 (22) (2024) 15777–15790. https://doi.org/10.1039/D4RA02959C.
[12] I. Sriyanti, D. Edikresnha, M. M. Munir, H. Rachmawati, Khairurrijal, Electrospun Polyvinylpyrrolidone (PVP) Nanofiber Mats Loaded by Garcinia mangostana L. Ex- tracts, Materials Science Forum 880 (2016) 11–14. https://doi.org/10.4028/www.scientific.net/MSF.880.11.
[13] A. Priyanto, D. A. Hapidin, T. Suciati, K. Khairurrijal, Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications, Food Engineering Reviews 14 (3) (2022) 435–461. https://doi.org/10.1007/s12393-021-09304-w.
[14] S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnology 21 (10) (2003) 1171–1178. https://doi.org/10.1038/nbt874.
[15] P. X. Ma, R. Zhang, Synthetic nano-scale fibrous extra- cellular matrix, Journal of Biomedical Materials Research 46 (1) (1999) 60–72. https://doi.org/10.1002/(SICI) 1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H.
[16] W. Zhu, X. Ma, M. Gou, D. Mei, K. Zhang, S. Chen, 3D printing of functional biomaterials for tissue engineering, Current Opin- ion in Biotechnology 40 (2016) 103–112. https://doi.org/10. 1016/j.copbio.2016.03.014.
[17] S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi, J. Liu, M. A. Kuss, S. Chen, B. Duan, State-of-the-art review of advanced elec- trospun nanofiber yarn-based textiles for biomedical applications, Applied Materials Today 27 (2022) 101473. https://doi.org/10.1016/j.apmt.2022.101473.
[18] L. Nulhakim, KARAKTERISTIK NANOGENERATOR PIEZOELEKTRIK ZnO DOPING Co3O4, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer 9 (1) (2018) 687–692. https://doi.org/10.24176/simet.v9i1.1821.
[19] T. Wu, X. Mo, Y. Xia, Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications, Ad- vanced Healthcare Materials 9 (6) (2020) 1901761. https://doi.org/10.1002/adhm.201901761.
[20] Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Electrospun Nanofibers for New Generation Flexible Energy Storage, ENERGY & EN- VIRONMENTAL MATERIALS 4 (4) (2021) 502–521. https://doi.org/10.1002/eem2.12146.
[21] S. Forghani, H. Almasi, M. Moradi, Electrospun nanofibers as food freshness and time-temperature indicators: A new ap- proach in food intelligent packaging, Innovative Food Science & Emerging Technologies 73 (2021) 102804. https://doi.org/10.1016/j.ifset.2021.102804.
[22] F. Topuz, T. Uyar, Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications, Food Research International 130 (2020) 108927. https://doi.org/10.1016/j.foodres.2019.108927.
[23] C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods 9 (7) (2012) 671–675. https://doi.org/10.1038/nmeth.2089.
[24] Y. Chen, X. Liu, M. Yang, W. Sun, C. Mao, Integration of geneti- cally engineered virus nanofibers and fibrin to form injectable fibrous neuron-rich hydrogels and enable neural differentia- tion, Journal of Materials Chemistry B 11 (4) (2023) 802–815. https://doi.org/10.1039/D2TB01712A.
[25] P. Shao, B. Niu, H. Chen, P. Sun, Fabrication and charac- terization of tea polyphenols loaded pullulan-CMC electro- spun nanofiber for fruit preservation, International Journal of Biological Macromolecules 107 (2018) 1908–1914. https://doi.org/10.1016/j.ijbiomac.2017.10.054.
[26] A. Asiri, R. H. Al-Ashwal, M. H. Sani, S. Saidin, Effects of Electrospinning Voltage and Flow Rate on Morphology of Poly-vinyl Alcohol Nanofibers, Journal of Physics: Confer- ence Series 1372 (1) (2019) 012035. https://doi.org/10.1088/ 1742-6596/1372/1/012035.
[27] H. Niragire, T. G. Kebede, S. Dube, M. Maaza, M. M. Nindi, Chitosan-based electrospun nanofibers mat for the removal of acidic drugs from influent and effluent, Chemical Engineering Communications 210 (9) (2023) 1485–1507. https://doi.org/10.1080/00986445.2022.2116321.
[28] A. G. S¸ ener, A. S. Altay, F. Altay, Effect of voltage on morphology of electrospun nanofibers, Institute Of Electrical and Electronics Engineer, Bursa, Turkey, 2011.
[29] M. Ahmadi Bonakdar, D. Rodrigue, Electrospinning: Processes, Structures, and Materials, Macromol 4 (1) (2024) 58–103. https://doi.org/10.3390/macromol4010004.
[30] L. Zhan, J. Deng, Q. Ke, X. Li, Y. Ouyang, C. Huang, X. Liu, Y. Qian, Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications, Advanced Fiber Materials 4 (2) (2022) 203–213. https://doi.org/10.1007/ s42765-21-00116-5.
[31] R. Amna, K. Ali, M. I. Malik, S. I. Shamsah, A Brief Review of Electrospinning of Polymer Nanofibers: History and Main Applications, Journal of New Materials for Electrochemical Systems 23 (3) (2020) 151–163. https://doi.org/10.14447/jnmes.v23i3.a01.
[32] N. Z Al-Hazeem, Effect of the Distance between the Needle Tip and the Collector on Nanofibers Morphology, Nanomedicine & Nanotechnology Open Access 5 (3) (2020). https://doi.org/10.23880/NNOA-16000195.
[33] C. Campanale, I. Savino, C. Massarelli, V. F. Uricchio, Fourier Transform Infrared Spectroscopy to Assess the Degree of Al- teration of Artificially Aged and Environmentally Weathered Microplastics, Polymers 15 (4) (2023) 911. https://doi.org/10.3390/polym15040911.
[34] M. Yuan, X. Lin, D. Wang, J. Dai, Proteins: Neglected active in- gredients in edible bird’s nest, Chinese Herbal Medicines 15 (3) (2023) 383–390. https://doi.org/10.1016/j.chmed.2023.02.004.
[35] R. Mohamad Ibrahim, N. N. Mohamad Nasir, M. Z. Abu Bakar, R. Mahmud, N. A. Ab Razak, The Authentication and Grading of Edible Bird’s Nest by Metabolite, Nutritional, and Mineral Profiling, Foods 10 (7) (2021) 1574. https://doi.org/10.3390/foods10071574.
[36] M. D. Ohi, EM Analysis of Protein Structure, in: Encyclopedia of Life Sci- ences, 1st Edition, Wiley, 2009. https://doi.org/10.1002/9780470015902.a0021885.
[37] H. Yuan, S. Tang, Q. Luo, T. Xiao, W. Wang, Q. Ma, X. Guo, Y. Wu, Micro-FTIR spectroscopy and partial least-squares regression for rapid determination of moisture content of nanogram-scaled heat-treated wood, Journal of Wood Science 66 (1) (2020) 1. https://doi.org/10.1186/s10086-020-1848-7.
[38] J. De Meutter, E. Goormaghtigh, Amino acid side chain contri- bution to protein FTIR spectra: impact on secondary structure evaluation, European Biophysics Journal 50 (3-4) (2021) 641–651. https://doi.org/10.1007/s00249-021-01507-7.
[39] C. H. Lee, T. H. Lee, S. L. Wong, B. B. Nyakuma, N. Ham- dan, S. C. Khoo, H. Ramachandran, H. Jamaluddin, Character- istics and trends in global Edible Bird’s Nest (EBN) research (2002–2021): a review and bibliometric study, Journal of Food Measurement and Characterization 17 (5) (2023) 4905–4926. https://doi.org/10.1007/s11694-023-02006-3.
[40] L. Guo, Y. Wu, M. Liu, Y. Ge, Y. Chen, Rapid authentication of edible bird’s nest by FTIR spectroscopy combined with chemo- metrics, Journal of the Science of Food and Agriculture 98 (8) (2018) 3057–3065. https://doi.org/10.1002/jsfa.8805.
[41] C. H. Ng, P. L. Tang, Y. Y. Ong, Enzymatic hydrolysis improves digestibility of edible bird’s nest (EBN): combined effect of pre- treatment and enzyme, Journal of Food Measurement and Char- acterization 17 (1) (2023) 549–563. https://doi.org/10.1007/s11694-022-01648-z.
[42] A. Ujuldah, A. R. Hakim, R. Saputri, FTIR Spectroscopic Char- acterization of Edible Bird’s Nest From Jenamas Central Kali- mantan 1 (1) (2023).
[43] J. S. Ng, S. A. Muhammad, C. H. Yong, A. Mohd Rodhi, B. Ibrahim, M. N. H. Adenan, S. Moosa, Z. Othman, N. A. Abdullah Salim, Z. Sharif, F. Ismail, S. D. Kelly, A. Canna- van, Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discrimi- nant Analysis, Foods 11 (16) (2022) 2401. https://doi.org/10.3390/foods11162401.
[44] T. Song, J. Li, Q. Deng, Y. Gao, Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film, Molecules 28 (22) (2023) 7605. https://doi.org/10.3390/molecules28227605.
[45] R. P. D’Amelia, S. Gentile, W. F. Nirode, L. Huang, Quantita- tive Analysis of Copolymers and Blends of Polyvinyl Acetate (PVAc) Using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA).
[46] I. A. Safo, M. Werheid, C. Dosche, M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structure- directing agent in the formation of Pt nanocubes, Nanoscale Advances 1 (8) (2019) 3095–3106. https://doi.org/10.1039/C9NA00186G.
[47] P. C. V. I. A, Transformação De Plastômeros.
[48] N. Roy, N. Saha, PVP-based hydrogels: Synthesis, properties and applications (May 2016).
[49] V. E. Zhivulin, R. K. Khairanov, N. A. Zlobina, L. A. Pesin, Mod- ification of the IR Spectra Shape in the 2000–2300 cm–1 Absorp- tion Band upon the Aging of a Chemically Dehydrofluorinated Poly(vinylidene fluoride) Film, Journal of Surface Investiga- tion: X-ray, Synchrotron and Neutron Techniques 14 (6) (2020) 1144–1151. https://doi.org/10.1134/S1027451020060178.
[50] A. A. Mahmoud, O. Osman, K. Eid, E. A. Ashkar, A. Okasha, D. Atta, M. Eid, Z. A. Aziz, A. Fakhry, FTIR Spectroscopy of Natural Bio-Polymers Blends (2014).
[51] Y. Lv, F. Xu, F. Liu, M. Chen, Investigation of Structural Charac- teristics and Solubility Mechanism of Edible Bird Nest: A Mucin Glycoprotein, Foods 12 (4) (2023) 688. https://doi.org/10.3390/foods12040688.
[52] M. Feist, Thermal analysis: basics, applications, and bene- fit, ChemTexts 1 (1) (2015) 8. https://doi.org/10.1007/s40828-015-0008-y.
[53] F. Rashid, M. Al-Obaidi, A. Dulaimi, L. Bernardo, M. Eleiwi, H. Mahood, A. Hashim, A Review of Recent Improvements, Developments, Effects, and Challenges on Using Phase-Change Materials in Concrete for Thermal Energy Storage and Release, Journal of Composites Science 7 (9) (2023) 352. https://doi.org/10.3390/jcs7090352.
[54] E. Díaz-Montes, Polysaccharides: Sources, Characteristics, Prop- erties, and Their Application in Biodegradable Films, Polysac- charides 3 (3) (2022) 480–501. https://doi.org/10.3390/polysaccharides3030029.
[55] H. L. Ornaghi, M. Faccio, M. R. F. Soares, Thermal Degradation Kinetics of Natural Fibers: Determination of the Kinetic Triplet and Lifetime Prediction, Polysaccharides 5 (3) (2024) 169–183. https://doi.org/10.3390/polysaccharides5030013.
[56] X. Qi, Y. Zhang, H. Yu, J. Xie, Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Pro- cessing, Foods 12 (2) (2023) 249. https://doi.org/10.3390/foods12020249.
[57] M. S. Saracoglu, M. K. Coruh, Thermal degradation proper- ties, kinetic, thermodynamic and reaction mechanism of pyrol- ysis of biomass shells: pistachio, almond, walnut and hazel- nut as bioenergy potential, Biomass Conversion and Biorefin- ery 14 (24) (2024) 32427–32452. https://doi.org/10.1007/s13399-023-05052-5.
[58] B. Krause, S. Imhoff, B. Voit, P. Pötschke, Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt- Mixed Polymer/Carbon Nanotube Composites, Micromachines 14 (1) (2023) 181. https://doi.org/10.3390/mi14010181.
[59] C. Leyva-Porras, P. Cruz-Alcantar, V. Espinosa-Solís, E. Martínez-Guerra, C. I. Piñón-Balderrama, I. Com- pean Martínez, M. Z. Saavedra-Leos, Application of Differential Scanning Calorimetry (DSC) and Modu- lated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries, Polymers 12 (1) (2019) 5. https://doi.org/10.3390/polym12010005.
[60] M. I. Loría-Bastarrachea, W. Herrera-Kao, J. V. Cauich- Rodríguez, J. M. Cervantes-Uc, H. Vázquez-Torres, A. Ávila Ortega, A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone), Journal of Thermal Analysis and Calorimetry 104 (2) (2011) 737–742. https://doi.org/10.1007/s10973-010-1061-9.
[61] L. C. Mendes, R. C. Rodrigues, E. P. Silva, Thermal, structural and morphological assessment of PVP/HA composites, Journal of Thermal Analysis and Calorimetry 101 (3) (2010) 899–905. https://doi.org/10.1007/s10973-010-0835-4.
[62] M. A. Bkkar, R. O. Olekhnovich, A. V. Kremleva, Y. N. Ko- vach, V. Kalanchina, M. V. Uspenskaya, Fabrication of elec- trospun polymer nanofibers modified with all-inorganic per- ovskite nanocrystals for flexible optoelectronic devices, Applied Nanoscience 12 (10) (2022) 2961–2977. https://doi.org/10.1007/s13204-022-02603-6.
[63] J. R. P. Forgie, F. Leclinche, E. Dréan, P. I. Dolez, Electrospinning of High-Performance Nanofibres: State of the Art and Insights into the Path Forward, Applied Sciences 13 (22) (2023) 12476. https://doi.org/10.3390/app132212476.
[64] N. Palani, P. Vijayakumar, P. Monisha, S. Ayyadurai, S. Ra- jadesingu, Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing, Journal of Nanobiotechnology 22 (1) (2024) 211. https://doi.org/10.1186/s12951-024-02491-8.
[65] M. Tahir, S. Vicini, A. Sionkowska, Electrospun Materials Based on Polymer and Biopolymer Blends—A Review, Polymers 15 (7) (2023) 1654. https://doi.org/10.3390/polym15071654.