Role of Ni dopant on the improvement of ZnO-based reusable photocatalytic materials
Main Article Content
Abstract
This study investigates the impact of Ni doping on the enhancement of ZnO-based reusable photocatalytic materials. Ni concentrations derived from nickel chloride hexahydrate were 0 wt% (ZN-1), 1 wt% (ZN-2), and 3 wt% (ZN-3). Field-emission scanning electron microscopy (FESEM) analysis reveals a significant morphological transformation from flower-like structures in pure ZnO to nanoridges in Ni-doped ZnO. X-ray diffraction data indicate a reduction in crystalline quality with Ni incorporation. UV-Vis spectroscopy shows an increase in the bandgap from 3.22 eV for pure ZnO (ZN-1) to 3.34 eV for Ni-doped ZnO (ZN-2 and ZN-3). Photocatalytic efficiency improves markedly, achieving 30%, 60%, and 80% degradation for ZN-1, ZN-2, and ZN-3, respectively, after 1-hour illumination. Notably, the photocatalytic performance remains robust even after five recycling cycles. These findings reveal the potential of Ni-doped ZnO as a cost-effective, reusable, and highly efficient photocatalytic material.
Article Details
References
[1] R. Gayatri, T.E. Agustina, R. Moeksin, D. Bahrin, G. Gustini, Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light, Journal of Ecological Engineering 22 (2021) 178–186. https://doi.org/10.12911/22998993/131031.
[2] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res 88 (2016) 428–448. https://doi.org/10.1016/j.watres.2015.09.045.
[3] J.-Z. Guo, B. Li, L. Liu, K. Lv, Removal of methylene blue from aqueous solutions by chemically modified bamboo, Chemosphere 111 (2014) 225–231. https://doi.org/10.1016/j.chemosphere.2014.03.118.
[4] M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer, J Mol Liq 216 (2016) 781–787. https://doi.org/10.1016/j.molliq.2016.01.093.
[5] H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv 4 (2014) 54454–54462. https://doi.org/10.1039/C4RA08820D.
[6] M. Khodaie, N. Ghasemi, B. Moradi, M. Rahimi, Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl2 Activated Corn Husk Carbon Equilibrium Studies, J Chem 2013 (2013) 383985. https://doi.org/10.1155/2013/383985.
[7] A.A. Abdul Mutalib, N.F. Jaafar, ZnO photocatalysts applications in abating the organic pollutant contamination: A mini review, Total Environment Research Themes 3–4 (2022) 100013. https://doi.org/10.1016/j.totert.2022.100013.
[8] N. Roy, S. Chakraborty, ZnO as photocatalyst: An approach to waste water treatment, Mater Today Proc 46 (2021) 6399–6403. https://doi.org/10.1016/j.matpr.2020.06.264.
[9] S. Horikoshi, N. Serpone, Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects, Catal Today 340 (2020) 334–346. https://doi.org/10.1016/j.cattod.2018.10.020.
[10] M.P. Ali, A. Rianjanu, N. Pertiwi, R. Kurniawan, R. Marlina, E. Nurfani, Optical and photocatalytic properties of ZnO:Mg film grown by spray pyrolysis, Journal of the Iranian Chemical Society (2024). https://doi.org/10.1007/s13738-024-03105-8.
[11] E. Nurfani, M.P. Ali, A. Rianjanu, L. Nulhakim, M.S. Anrokhi, G.T.M. Kadja, Effect of solution molarity on the optical and photocatalytic properties of sprayed ZnO film, Mater Chem Phys 309 (2023) 128412. https://doi.org/10.1016/j.matchemphys.2023.128412.
[12] C.N.C. Hitam, A.A. Jalil, A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants, J Environ Manage 258 (2020) 110050. https://doi.org/10.1016/j.jenvman.2019.110050.
[13] L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts, Energy Environ Sci 11 (2018) 1362–1391. https://doi.org/10.1039/C7EE03640J.
[14] T. Taher, Z. Yu, E.K.A. Melati, A. Munandar, R. Aflaha, K. Triyana, Y.G. Wibowo, K. Khairurrijal, A. Lesbani, A. Rianjanu, Enabling dual-functionality material for effective anionic and cationic dye removal by using Nb2O5/MgAl-LDH nanocomposites, Journal of Hazardous Materials Letters 5 (2024) 100103. https://doi.org/10.1016/j.hazl.2024.100103.
[15] A. Rianjanu, K.D.P. Marpaung, C. Siburian, S.A. Muhtar, N.I. Khamidy, J. Widakdo, N. Yulianto, R. Aflaha, K. Triyana, T. Taher, Enhancement of photocatalytic activity of CeO2 nanorods through lanthanum doping (La–CeO2) for the degradation of Congo red dyes, Results in Engineering 23 (2024) 102748. https://doi.org/10.1016/j.rineng.2024.102748.
[16] D. Oktapia, E. Nurfani, B.A. Wahjoedi, L. Nulhakim, G.T.M. Kadja, Seedless hydrothermal growth of hexagonal prism ZnO for photocatalytic degradation of methylene blue: the effect of pH and post-annealing treatment, Semicond Sci Technol 38 (2023). https://doi.org/10.1088/1361-6641/acf397.
[17] B. Bekele, A. Degefa, F. Tesgera, L.T. Jule, R. Shanmugam, L. Priyanka Dwarampudi, N. Nagaprasad, K. Ramasamy, Green versus Chemical Precipitation Methods of Preparing Zinc Oxide Nanoparticles and Investigation of Antimicrobial Properties, J Nanomater 2021 (2021) 9210817. https://doi.org/10.1155/2021/9210817.
[18] E.I. Naik, H.S.B. Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method, Chemical Data Collections 29 (2020) 100505. https://doi.org/10.1016/j.cdc.2020.100505.
[19] M.A.K. Purbayanto, E. Nurfani, M.A. Naradipa, R. Widita, A. Rusydi, Y. Darma, Enhancement in green luminescence of ZnO nanorods grown by dc-unbalanced magnetron sputtering at room temperature, Opt Mater (Amst) 108 (2020) 110418. https://doi.org/10.1016/j.optmat.2020.110418.
[20] E. Nurfani, A. Lailani, W.A.P. Kesuma, M.S. Anrokhi, G.T.M. Kadja, M. Rozana, UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis, Opt Mater (Amst) 112 (2021). https://doi.org/10.1016/j.optmat.2020.110768.
[21] S. Iqbal, A. Bahadur, M. Javed, O. Hakami, R.M. Irfan, Z. Ahmad, A. AlObaid, M.M. Al-Anazy, H.B. Baghdadi, H.S.M. Abd-Rabboh, T.I. Al-Muhimeed, G. Liu, M. Nawaz, Design Ag-doped ZnO heterostructure photocatalyst with sulfurized graphitic C3N4 showing enhanced photocatalytic activity, Materials Science and Engineering: B 272 (2021) 115320. https://doi.org/10.1016/j.mseb.2021.115320.
[22] A. Suguna, S. Prabhu, M. Selvaraj, M. Geerthana, A. Silambarasan, M. Navaneethan, R. Ramesh, C. Sridevi, Annealing effect on photocatalytic activity of ZnO nanostructures for organic dye degradation, Journal of Materials Science: Materials in Electronics 33 (2022) 8868–8879. https://doi.org/10.1007/s10854-021-06942-y.
[23] R.M. Mohamed, A.A. Ismail, Photocatalytic reduction and removal of mercury ions over mesoporous CuO/ZnO S-scheme heterojunction photocatalyst, Ceram Int 47 (2021) 9659–9667. https://doi.org/10.1016/j.ceramint.2020.12.105.
[24] R. Qin, F. Meng, M.W. Khan, B. Yu, H. Li, Z. Fan, J. Gong, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts, Mater Lett 240 (2019) 84–87. https://doi.org/10.1016/j.matlet.2018.12.139.
[25] Z. Fan, C. Li, M. Xu, Fabrication of ZnO/Ag photocatalyst and its photocatalytic degradation properties on trimethylamine, Journal of the Iranian Chemical Society 21 (2024) 2121–2126. https://doi.org/10.1007/s13738-024-03055-1.
[26] E. Nurfani, C.D. Satrya, I. Abdurrahman, I.M. Sutjahja, T. Winata, K. Takase, A. Rusydi, Y. Darma, Weakening of excitonic screening effects in TixZn1-xO thin films, Thin Solid Films 645 (2018) 399–404. https://doi.org/10.1016/j.tsf.2017.11.015.
[27] E. Nurfani, R. Kurniawan, T. Aono, K. Takeda, Y. Shirai, I.M. Sutjahja, A. Rusydi, T. Winata, K. Takase, Y. Darma, Defect-induced excitonic recombination in TixZn1-xO thin films grown by DC-unbalanced magnetron sputtering, Jpn J Appl Phys 56 (2017) 112101. https://doi.org/10.7567/JJAP.56.112101.
[28] E. Nurfani, M.A.K. Purbayanto, R. Akutsu, M.A. Naradipa, L.J. Diguna, M.D. Birowosuto, K. Takase, A. Rusydi, Y. Darma, Tuning the excitonic properties of ZnO:Sn thin films, Opt Mater (Amst) 88 (2019) 111–116. https://doi.org/10.1016/j.optmat.2018.11.015.
[29] E. Nurfani, W.A.P. Kesuma, A. Lailani, M.S. Anrokhi, G.T.M. Kadja, M. Rozana, W.S. Sipahutar, M.F. Arif, Enhanced UV sensing of ZnO films by Cu doping, Opt Mater (Amst) 114 (2021). https://doi.org/10.1016/j.optmat.2021.110973.
[30] E. Nurfani, Y.K. Lature, M.S. Anrokhi, Morphological modification and UV sensitivity enhancement in ZnO:Fe films with a seed layer, Opt Mater (Amst) 122 (2021). https://doi.org/10.1016/j.optmat.2021.111658.
[31] I. Ahmad, M. Aslam, U. Jabeen, M.N. Zafar, M.N.K. Malghani, N. Alwadai, F.H. Alshammari, A.S. Almuslem, Z. Ullah, ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue, Inorganica Chim Acta 543 (2022) 121167. https://doi.org/10.1016/j.ica.2022.121167.
[32] N. Azizah, S. Muhammady, M.A.K. Purbayanto, E. Nurfani, T. Winata, E. Sustini, R. Widita, Y. Darma, Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film, Progress in Natural Science: Materials International 30 (2020) 28–34. https://doi.org/10.1016/j.pnsc.2020.01.006.
[33] S.H. Zyoud, V. Ganesh, C.A. Che Abdullah, I.S. Yahia, A.H. Zyoud, A.F.I. Abdelkader, M.G. Daher, M. Nasor, M. Shahwan, H.Y. Zahran, M.S. Abd El-sadek, E.A. Kamoun, S.M. Altarifi, M.S. Abdel-wahab, Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity, Crystals (Basel) 13 (2023). https://doi.org/10.3390/cryst13071087.
[34] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin 3 (1) (1968) 37–46. https://doi.org/10.1016/0025-5408(68)90023-8