Emerging trends and future perspectives in adsorption technologies for water and wastewater treatment: A sunrise or sunset horizon?
Main Article Content
Abstract
Adsorption technology has been a focal point of water and wastewater treatment engineering research for over a century, yielding numerous scientific publications. These studies have primarily concentrated on developing efficient adsorbent materials, understanding adsorption mechanisms and characteristics, and investigating the removal of conventional or emerging pollutants. A common objective cited in most of these reports is the practical application of the adsorption process in municipal water or wastewater treatment plants, aiming to enhance water quality and safety. However, the majority of these studies overlook issues related to technology transfer, thereby widening the gap between academic recommendations and their practical implementation in industry. In this review, we trace the evolution of adsorption technology in water and wastewater treatment, evaluating its application viability and highlighting the approaches that hold the greatest promise for the future. Furthermore, we propose strategies for scientists and engineers dedicated to advancing research efforts that translate into industrially viable adsorption technologies for water treatment. While the practical effectiveness of adsorption technologies may not fully align with academic enthusiasm, this critical evaluation should not dismiss their potential as future technology since adsorption retains significant and distinct advantages that merit further exploration.
Article Details
References
[1] E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, DE GRUYTER, 2012. https://doi.org/10.1515/9783110240238. URL https://www.degruyter.com/document/doi/10.1515/9783110240238/html
[2] H. N. Tran, Adsorption Technology for Water and Wastewater Treatments, Water 15 (15) (2023) 2857. https://doi.org/10.3390/w15152857.
[3] X. Vecino, M. Reig, Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery, Water 14 (6) (2022) 911. https://doi.org/10.3390/w14060911.
[4] K. O. Iwuozor, A. G. Adeniyi, E. C. Emenike, B. O. Olaniyi, V. U. Anyanwu, J. O. Bamigbola, H. T. Ojo, Adsorption Technology in the Sugar Industry: Current Status and Future Perspectives, Sugar Tech 25 (5) (2023) 1005–1013. https://doi.org/10.1007/s12355-023-01272-1.
[5] T. G. Ambaye, M. Vaccari, E. D. Van Hullebusch, A. Amrane, S. Rtimi, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater, International Journal of Environmental Science and Technology 18 (10) (2021) 3273–3294. https://doi.org/10.1007/s13762-020-03060-w.
[6] S. Lu, Q. Liu, R. Han, M. Guo, J. Shi, C. Song, N. Ji, X. Lu, D. Ma, Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds, Journal of Environmental Sciences 105 (2021) 184–203. https://doi.org/10.1016/j.jes.2021.01.007.
[7] H. Smaili, C. Ng, Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water – a critical review, Environmental Science: Water Research & Technology 9 (2) (2023) 344–362. https://doi.org/10.1039/D2EW00721E.
[8] S. Sorayyaei, F. Raji, A. Rahbar-Kelishami, S. N. Ashrafizadeh, Combination of electrocoagulation and adsorption processes to remove methyl orange from aqueous solution, Environmental Technology & Innovation 24 (2021) 102018. https://doi.org/10.1016/j.eti.2021.102018.
[9] Z. Ren, Z. Wang, L. Lv, P. Ma, G. Zhang, Y. Li, Y. Qin, P. Wang, X. Liu, W. Gao, Fe–N complex biochar as a superior partner of sodium sulfide for methyl orange decolorization by combination of adsorption and reduction, Journal of Environmental Management 316 (2022) 115213. https://doi.org/10.1016/j.jenvman.2022.115213.
[10] N. K. Gupta, J. Bae, S. Kim, K. S. Kim, Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism, Chemosphere 274 (2021) 129789. https://doi.org/10.1016/j.chemosphere.2021.129789.
[11] U. Baig, M. K. Uddin, M. Gondal, Removal of hazardous azo dye from water using synthetic nano adsorbent: Facile synthesis, characterization, adsorption, regeneration and design of experiments, Colloids and Surfaces A: Physicochemical and Engineering Aspects 584 (2020) 124031. https://doi.org/10.1016/j.colsurfa.2019.124031.
[12] D. Mangla, Annu, A. Sharma, S. Ikram, Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective, Journal of Hazardous Materials 425 (2022) 127946. https://doi.org/10.1016/j.jhazmat.2021.127946.
[13] K. K. Chenab, B. Sohrabi, A. Jafari, S. Ramakrishna, Water treatment: functional nanomaterials and applications from adsorption to photodegradation, Materials Today Chemistry 16 (2020) 100262. https://doi.org/10.1016/j.mtchem.2020.100262.
[14] A. A. Siyal, M. R. Shamsuddin, A. Low, N. E. Rabat, A review on recent developments in the adsorption of surfactants from wastewater, Journal of Environmental Management 254 (2020) 109797. https://doi.org/10.1016/j.jenvman.2019.109797.
[15] R. Chakraborty, A. Asthana, A. K. Singh, B. Jain, A. B. H. Susan, Adsorption of heavy metal ions by various low-cost adsorbents: a review, International Journal of Environmental Analytical Chemistry 102 (2) (2022) 342–379. https://doi.org/10.1080/03067319.2020.1722811.
[16] M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: A comprehensive and systematic review (2010-2020), Science of The Total Environment 812 (2022) 151334. https://doi.org/10.1016/j.scitotenv.2021.151334.
[17] X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Separation and Purification Technology 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.
[18] O. Saheed, W. D. Oh, F. B. M. Suah, Chitosan modifications for adsorption of pollutants – A review, Journal of Hazardous Materials 408 (2021) 124889. https://doi.org/10.1016/j.jhazmat.2020.124889.
[19] Z. Zhang, T. Wang, H. Zhang, Y. Liu, B. Xing, Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism, Science of The Total Environment 757 (2021) 143910. https://doi.org/10.1016/j.scitotenv.2020.143910.
[20] S. Rajendran, A. Priya, P. Senthil Kumar, T. K. Hoang, K. Sekar, K. Y. Chong, K. S. Khoo, H. S. Ng, P. L. Show, A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review, Chemosphere 303 (2022) 135146. https://doi.org/10.1016/j.chemosphere.2022.135146.
[21] A. Hsini, Y. Naciri, M. Laabd, A. Bouziani, J. Navío, F. Puga, R. Boukherroub, R. Lakhmiri, A. Albourine, Development of a novel PANI@WO3 hybrid composite and its application as a promising adsorbent for Cr(VI) ions removal, Journal of Environmental Chemical Engineering 9 (5) (2021) 105885. https://doi.org/10.1016/j.jece.2021.105885.
[22] S. K. Yadav, S. Dhakate, B. Pratap Singh, Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes, Bioresource Technology 344 (2022) 126231. https://doi.org/10.1016/j.biortech.2021.126231.
[23] C. Calculli, A. M. D’Uggento, A. Labarile, N. Ribecco, Evaluating people’s awareness about climate changes and environmental issues: A case study, Journal of Cleaner Production 324 (2021) 129244. https://doi.org/10.1016/j.jclepro.2021.129244.
[24] S. V. Hanssen, V. Daioglou, Z. J. N. Steinmann, J. C. Doelman, D. P. Van Vuuren, M. A. J. Huijbregts, The climate change mitigation potential of bioenergy with carbon capture and storage, Nature Climate Change 10 (11) (2020) 1023–1029. https://doi.org/10.1038/s41558-020-0885-y.
[25] T. Wilberforce, A. Olabi, E. T. Sayed, K. Elsaid, M. A. Abdelkareem, Progress in carbon capture technologies, Science of The Total Environment 761 (2021) 143203. https://doi.org/10.1016/j.scitotenv.2020.143203.
[26] L. Prazeres Mazur, R. Reis Ferreira, R. Felix Da Silva Barbosa, P. Henrique Santos, T. Barcelos Da Costa, M. Gurgel Adeodato Vieira, A. Da Silva, D. Dos Santos Rosa, L. Helena Innocentini Mei, Development of novel biopolymer membranes by electrospinning as potential adsorbents for toxic metal ions removal from aqueous solution, Journal of Molecular Liquids 395 (2024) 123782. https://doi.org/10.1016/j.molliq.2023.123782.
[27] M. D. M. Orta, J. Martín, J. L. Santos, I. Aparicio, S. Medina-Carrasco, E. Alonso, Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation, Applied Clay Science 198 (2020) 105838. https://doi.org/10.1016/j.clay.2020.105838.
[28] Song, Y. Yu, X. Han, W. Yang, W. Pan, S. Jian, G. Duan, S. Jiang, J. Hu, Novel MOF(Zr)-on-MOF(Ce) adsorbent for elimination of excess fluoride from aqueous solution, Journal of Hazardous Materials 463 (2024) 132843. https://doi.org/10.1016/j.jhazmat.2023.132843.
[29] P. L. Yap, M. J. Nine, K. Hassan, T. T. Tung, D. N. H. Tran, D. Losic, Graphene‐Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress, Advanced Functional Materials 31 (9) (2021) 2007356. https://doi.org/10.1002/adfm.202007356.
[30] P. Arabkhani, A. Asfaram, Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal, Journal of Hazardous Materials 384 (2020) 121394. https://doi.org/10.1016/j.jhazmat.2019.121394.
[31] R. Ahmed, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, M. U. Ali, Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review, Journal of Cleaner Production 242 (2020) 118409. https://doi.org/10.1016/j.jclepro.2019.118409.
[32] S. U. Mehdi, H. Balamirtham, K. Aravamudan, Optimal Adsorption of a Binary Dye Mixture of Basic Yellow 2 and Rhodamine B using Mixture-Process Variable Design, Ridge Analysis and Multi-Objective Optimization, Environmental Advances 15 (2024) 100490. https://doi.org/10.1016/j.envadv.2024.100490.
[33] W. T. Vieira, M. B. De Farias, M. P. Spaolonzi, M. G. C. Da Silva, M. G. A. Vieira, Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review, Environmental Chemistry Letters 18 (4) (2020) 1113–1143. https://doi.org/10.1007/s10311-020-01000-1.
[34] C. B. De Carvalho, I. R. Rosa, P. Del Vecchio, I. V. J. Dávila, K. G. P. Nunes, N. R. Marcilio, L. A. Féris, Degradation of ampicillin by combined process: Adsorption and Fenton reaction, Environmental Technology & Innovation 26 (2022) 102365. https://doi.org/10.1016/j.eti.2022.102365.
[35] Sayed, W. H. M. Wan Mohtar, Z. M. Hanafiah, W. A. A. Q. I. Wan-Mohtar, T. S. B. Abd Manan, S. A. B. Mohamad Sharif, Simultaneous enhanced removal of pharmaceuticals and hormone from wastewaters using series combinations of ultra-violet irradiation, bioremediation, and adsorption technologies, Journal of Water Process Engineering 57 (2024) 104589. https://doi.org/10.1016/j.jwpe.2023.104589.
[36] G. L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, Journal of Environmental Chemical Engineering 8 (4) (2020) 103988. https://doi.org/10.1016/j.jece.2020.103988.
[37] Y. Miao, W. Peng, W. Wang, Y. Cao, H. Li, L. Chang, Y. Huang, G. Fan, H. Yi, Y. Zhao, T. Zhang, 3D-printed montmorillonite nanosheets based hydrogel with biocompatible polymers as excellent adsorbent for Pb(ii) removal, Separation and Purification Technology 283 (2022) 120176. https://doi.org/10.1016/j.seppur.2021.120176.
[38] H. Molavi, A. Hakimian, A. Shojaei, M. Raeiszadeh, Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media, Applied Surface Science 445 (2018) 424–436. https://doi.org/10.1016/j.apsusc.2018.03.189.
[39] D. D. Sewu, P. Boakye, S. H. Woo, Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste, Bioresource Technology 224 (2017) 206–213. https://doi.org/10.1016/j.biortech.2016.11.009.
[40] Y. Gao, T. Cheng, F. Zhao, G. Huang, J. Bi, A hybrid linker-MOF fibrous composite for efficient diclofenac removal and self-cleaning, Separation and Purification Technology 337 (2024) 126260. https://doi.org/10.1016/j.seppur.2023.126260.
[41] T. Subrahmanya, J. Widakdo, S. Mani, H. F. M. Austria, W.-S. Hung, M. H K, J. K. Nagar, C.-C. Hu, J.-Y. Lai, An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA, Journal of Cleaner Production 349 (2022) 131425. https://doi.org/10.1016/j.jclepro.2022.131425.
[42] H. Patel, Comparison of batch and fixed bed column adsorption: a critical review, International Journal of Environmental Science and Technology 19 (10) (2022) 10409–10426. https://doi.org/10.1007/s13762-021-03492-y.
[43] S. Treumann, S. Torkzaban, S. A. Bradford, R. M. Visalakshan, D. Page, An explanation for differences in the process of colloid adsorption in batch and column studies, Journal of Contaminant Hydrology 164 (2014) 219–229. https://doi.org/10.1016/j.jconhyd.2014.06.007.
[44] A. Olgun, N. Atar, S. Wang, Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity, Chemical Engineering Journal 222 (2013) 108–119. https://doi.org/10.1016/j.cej.2013.02.029.
[45] Momina, K. Ahmad, Feasibility of the adsorption as a process for its large scale adoption across industries for the treatment of wastewater: Research gaps and economic assessment, Journal of Cleaner Production 388 (2023) 136014. https://doi.org/10.1016/j.jclepro.2023.136014.
[46] P.-J. Lu, H.-C. Lin, W.-T. Yu, J.-M. Chern, Chemical regeneration of activated carbon used for dye adsorption, Journal of the Taiwan Institute of Chemical Engineers 42 (2) (2011) 305–311. https://doi.org/10.1016/j.jtice.2010.06.001.
[47] N. El Messaoudi, M. El Khomri, A. El Mouden, A. Bouich, A. Jada, A. Lacherai, H. M. N. Iqbal, S. I. Mulla, V. Kumar, J. H. P. Américo-Pinheiro, Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review, Biomass Conversion and Biorefinery (Dec. 2022). https://doi.org/10.1007/s13399-022-03604-9.
[48] P. Gao, J. Cui, Y. Deng, Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption – regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA), Chemical Engineering Journal 405 (2021) 126698. https://doi.org/10.1016/j.cej.2020.126698.
[49] K. Shah, P. Pre, B. Alappat, Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances, Journal of the Taiwan Institute of Chemical Engineers 45 (4) (2014) 1733–1738. https://doi.org/10.1016/j.jtice.2014.01.006.
[50] B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: Progress and challenges, Science of The Total Environment 532 (2015) 112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130.
[51] W. Shahzad, M. Burhan, L. Ang, K. C. Ng, Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination, in: Emerging Technologies for Sustainable Desalination Handbook, Elsevier, 2018, pp. 3–34. https://doi.org/10.1016/B978-0-12-815818-0.00001-1. URL https://linkinghub.elsevier.com/retrieve/pii/B9780128158180000011
[52] W. Xiong, G. Zeng, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, Y. Liu, L. Hu, J. Wan, C. Zhou, R. Xu, X. Li, Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent, Science of The Total Environment 627 (2018) 235–244. https://doi.org/10.1016/j.scitotenv.2018.01.249.
[53] S. Zhou, J. Yin, Q. Ma, B. Baihetiyaer, J. Sun, Y. Zhang, Y. Jiang, J. Wang, X. Yin, Montmorillonite-reduced graphene oxide composite aerogel (M-rGO): A green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater, Separation and Purification Technology 296 (2022) 121416. https://doi.org/10.1016/j.seppur.2022.121416.
[54] Ahmad, F. Suryani Arsyad, I. Royani, P. Mega Syah Bahar Nur Siregar, T. Taher, A. Lesbani, High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution, Inorganic Chemistry Communications 150 (2023) 110517. https://doi.org/10.1016/j.inoche.2023.110517.