Niobium oxide electrode performance boosted by molybdenum doping and calcination for supercapacitor applications
Main Article Content
Abstract
Niobium pentoxide (Nb2O5) is a promising pseudocapacitive material for supercapacitor applications due to its high theoretical capacitance and electrochemical stability. However, its practical performance is limited by low electrical conductivity and poor ion transport kinetics. In this work, we report the enhancement of Nb2O5 electrode performance through molybdenum (Mo) doping and thermal calcination. Mo-doped Nb2O5 nanostructures were synthesized via a hydrothermal method followed by calcination at 500 °C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a rougher morphology and homogeneous Mo distribution in the doped sample. X-ray diffraction (XRD) revealed a structural transformation from a deformed orthorhombic phase in pristine Nb2O5 to a more crystalline pseudohexagonal phase in Mo-Nb2O5-500. Electrochemical analysis demonstrated a significant improvement in capacitive behavior, with Mo-Nb2O5-500 achieving a specific capacitance of 55.3 F/g at 5 mV/s, which is five times higher than the undoped sample. All electrodes exhibited stable cycling performance. These results highlight the synergistic role of Mo doping and calcination in enhancing the electrochemical properties of Nb2O5, offering a viable approach for developing high-performance pseudocapacitor electrodes.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem Soc Rev 46 (2017) 6816–6854. https://doi.org/10.1039/C7CS00205J.
[2] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ Sci 8 (2015) 702–730. https://doi.org/10.1039/C4EE03229B.
[3] F. Yu, L. Pang, H.-X. Wang, Preparation of mulberry-like RuO2 electrode material for supercapacitors, Rare Metals 40 (2021) 440–447. https://doi.org/10.1007/s12598-020-01561-8.
[4] E. Nurfani, P. Fau, N.I. Khamidy, R. Marlina, Effect of hydrothermal temperature on the structural and electrochemical properties of MnO2-based supercapacitors, Journal of Materials Science: Materials in Electronics 35 (2024) 2046. https://doi.org/10.1007/s10854-024-13820-w.
[5] P. Fau, L.M. Mahardhika, N. istiqomah I. Khamidy, M.G.I.G.I. Khan, B.P. Prasetya, R.Y. Arundina, R. Marlina, E. Nurfani, The Role of Sintering Temperature in MnO2 Nanorods for Supercapacitor Applications: Phase Evolution and Enhanced Capacitance, ECS Journal of Solid State Science and Technology (2025). https://doi.org/10.1149/2162-8777/ae1b6f.
[6] C. Lu, L. Liu, Y. Yang, Y. Ma, Q. Luo, M. Zhu, Recent Progress in Co 3 O 4 ‐Based Nanomaterials for Supercapacitors, ChemNanoMat 9 (2023). https://doi.org/10.1002/cnma.202200537.
[7] S. Aslam, S.M. Ramay, A. Mahmood, G.M. Mustafa, S. Zawar, S. Atiq, Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications, J Solgel Sci Technol 105 (2023) 360–369. https://doi.org/10.1007/s10971-022-06008-3.
[8] J. Wang, F. Zheng, M. Li, D. Jia, X. Mao, J. Fu, P. Hu, Q. Zhen, Y. Yu, Facile preparation of porous single crystal NiO nanoflake array directly grown on nickel foam for supercapacitive electrode material, J Alloys Compd 913 (2022) 165280. https://doi.org/10.1016/j.jallcom.2022.165280.
[9] T. Munawar, M. Shahid Nadeem, F. Mukhtar, S. Manzoor, M. Naeem Ashiq, F. Iqbal, Surfactant-assisted facile synthesis of petal-nanoparticle interconnected nanoflower like NiO nanostructure for supercapacitor electrodes material, Materials Science and Engineering: B 284 (2022) 115900. https://doi.org/10.1016/j.mseb.2022.115900.
[10] R. Pang, Z. Wang, J. Li, K. Chen, Polymorphs of Nb2O5 Compound and Their Electrical Energy Storage Applications, Materials 16 (2023) 6956. https://doi.org/10.3390/ma16216956.
[11] F. Shen, Z. Sun, Q. He, J. Sun, R.B. Kaner, Y. Shao, Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage, Mater Horiz 8 (2021) 1130–1152. https://doi.org/10.1039/D0MH01481H.
[12] L. She, D. Liu, Y. Zhao, L. Dong, Z. Wu, X. Xue, Y. Tian, W. Du, C. Zheng, S. He, M. Zhang, Y. Liu, J. Gan, C. Li, Y. Gao, F. Qi, X. Ren, Y. Jiang, Y. Yang, M. Gao, H. Pan, Advances on Defect Engineering of Niobium Pentoxide for Electrochemical Energy Storage, Small 21 (2025). https://doi.org/10.1002/smll.202410211.
[13] K. Su, H. Liu, Z. Gao, P. Fornasiero, F. Wang, Nb 2 O 5 ‐Based Photocatalysts, Advanced Science 8 (2021). https://doi.org/10.1002/advs.202003156.
[14] M.B. Beg, L. Ali, M. Altarawneh, Investigating niobium oxide-based materials: Synthesis, characterization, and applications in heterogeneous catalysis, Catalysis Reviews (2025) 1–90. https://doi.org/10.1080/01614940.2025.2564083.
[15] R.M.J. Lemos, R.D.C. Balboni, C.M. Cholant, C.F. Azevedo, A. Pawlicka, A. Gündel, W.H. Flores, C.O. Avellaneda, Molybdenum doping effect on sol-gel Nb2O5:Li+ thin films: Investigation of structural, optical and electrochromic properties, Mater Sci Semicond Process 134 (2021) 105995. https://doi.org/10.1016/j.mssp.2021.105995.
[16] A. Rianjanu, S.A. Muhtar, C. Siburian, K.D.P. Marpaung, R. Aflaha, S.E.M. Putra, A. Afandi, K. Triyana, F.F. Abdi, T. Taher, H.S. Wasisto, Tailoring Urchin‐Like Nb 2 O 5 Nanostructures with Molybdenum Doping to Enhance Adsorption Efficiency and Selectivity toward Cationic Dyes in Wastewater Treatment, Adv Eng Mater 27 (2025). https://doi.org/10.1002/adem.202402287.
[17] E. Abreu, M.Z. Fidelis, M.E. Fuziki, R.M. Malikoski, M.C. Mastsubara, R.E. Imada, J.L. Diaz de Tuesta, H.T. Gomes, M.D. Anziliero, B. Baldykowski, D.T. Dias, G.G. Lenzi, Degradation of emerging contaminants: Effect of thermal treatment on nb2o5 as photocatalyst, J Photochem Photobiol A Chem 419 (2021) 113484. https://doi.org/10.1016/j.jphotochem.2021.113484.
[18] X. Dong, H. Wang, J. Wang, Y. He, P. Yang, S. Wang, X. Chen, C. Yang, F. Lu, The effects of calcination on the electrochemical properties of manganese oxides, Nanoscale Adv 5 (2023) 5309–5321. https://doi.org/10.1039/D3NA00332A.
[19] X. Zhao, P. He, Q. Ruan, Y. Guo, X. Yan, X. Zhang, B. Liu, H. Chen, J. Fan, Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode for lithium ion batteries via a modified calcination process, Journal of Electroanalytical Chemistry 965 (2024) 118361. https://doi.org/10.1016/j.jelechem.2024.118361.
[20] T. Taher, P. Maharani, S.A. Muhtar, A. Munandar, A.N. Sidiq, A. Rianjanu, High Surface Area Ortho-Nb2O5 as Bifunctional Adsorbent and Photocatalyst for Efficient Removal of Tetracycline Antibiotics from Wastewater, Science and Technology Indonesia 10 (2025) 916–923. https://doi.org/10.26554/sti.2025.10.3.916-923.
[21] L.E. Helseth, Comparison of methods for finding the capacitance of a supercapacitor, J Energy Storage 35 (2021) 102304. https://doi.org/10.1016/j.est.2021.102304.
[22] A. Shokry, A.M. Elshaer, J. El Nady, S. Ebrahim, M. Khalil, High energy density and specific capacity for supercapacitor based on electrochemical synthesized polyindole, Electrochim Acta 423 (2022) 140614. https://doi.org/10.1016/j.electacta.2022.140614.
[23] T. Murayama, J. Chen, J. Hirata, K. Matsumoto, W. Ueda, Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid, Catal. Sci. Technol. 4 (2014) 4250–4257. https://doi.org/10.1039/C4CY00713A.
[24] T. Taher, A. Yoshida, A. Lesbani, I. Kurnia, G. Guan, A. Abudula, W. Ueda, Adsorptive removal and photocatalytic decomposition of cationic dyes on niobium oxide with deformed orthorhombic structure, J Hazard Mater 415 (2021) 125635. https://doi.org/10.1016/j.jhazmat.2021.125635.
[25] G. Chen, J. Chen, S. Zhao, G. He, T.S. Miller, Pseudohexagonal Nb 2 O 5 Anodes for Fast-Charging Potassium-Ion Batteries, ACS Appl Mater Interfaces 15 (2023) 16664–16672. https://doi.org/10.1021/acsami.2c21490.
[26] A. Zambotti, G.C. Nkala, S. Dutta, S.H. Bhimineni, N. Leport, A. Laperruque, J.N. Weker, P. Sautet, L. Pilon, B. Dunn, Probing the effect of atomic and morphological arrangements in the pseudocapacitive properties of TT-Nb2O5 nanostructures, Solid State Ion 429 (2025) 116990. https://doi.org/10.1016/j.ssi.2025.116990.
[27] L. Kong, X. Cao, J. Wang, W. Qiao, L. Ling, D. Long, Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes, J Power Sources 309 (2016) 42–49. https://doi.org/10.1016/j.jpowsour.2016.01.087.
[28] C.L. Ücker, V. Goetzke, F.C. Riemke, M.L. Vitale, L.R.Q. de Andrade, M.D. Ücker, E.C. Moreira, M.L. Moreira, C.W. Raubach, S.S. Cava, Multi-Photonic behavior of Nb2O5 and its correlation with synthetic methods, J Mater Sci 56 (2021) 7889–7905. https://doi.org/10.1007/s10853-021-05770-z.
[29] F.A. Qaraah, S.A. Mahyoub, M.E. Hafez, G. Xiu, Facile route for C–N/Nb 2 O 5 nanonet synthesis based on 2-methylimidazole for visible-light driven photocatalytic degradation of Rhodamine B, RSC Adv 9 (2019) 39561–39571. https://doi.org/10.1039/C9RA07505D.
[30] R. Rathnasamy, P. Thangasamy, V. Aravindhan, P. Sathyanarayanan, V. Alagan, Facile one-pot solvothermal-assisted synthesis of uniform sphere-like Nb2O5 nanostructures for photocatalytic applications, Research on Chemical Intermediates 45 (2019) 3571–3584. https://doi.org/10.1007/s11164-019-03809-0.
[31] N. Mohite, M. Shinde, A.K. Gupta, Y. Waghadkar, S.W. Gosavi, K.C. Mohite, R. Chauhan, S. Rane, Facile synthesis of hollow urchin-like Nb2O5 nanostructures and their performance in dye-sensitized solar cells, Journal of Solid State Electrochemistry 24 (2020) 273–281. https://doi.org/10.1007/s10008-019-04481-5.
[32] D. Shen, T. Lan, S. Gu, H. Luo, W. Yue, Y. Li, M. Wei, Novel Sea Urchin-Like Niobium Pentoxide as an Electron Transport Layer for Efficient and Stable Perovskite Solar Cells, Cryst Growth Des 25 (2025) 9433–9440. https://doi.org/10.1021/acs.cgd.5c01201.
[33] J. Chen, H. Wang, G. Huang, Z. Zhang, L. Han, W. Song, M. Li, Y. Zhang, Facile synthesis of urchin-like hierarchical Nb2O5 nanospheres with enhanced visible light photocatalytic activity, J Alloys Compd 728 (2017) 19–28. https://doi.org/10.1016/j.jallcom.2017.08.266.
[34] X. Meng, Z. Guan, J. Zhao, Z. Cai, S. Li, L. Bian, Y. Song, D. Guo, X. Liu, Lithium-pre-intercalated T-Nb2O5/graphene composite promoting pseudocapacitive performance for ultralong lifespan capacitors, Chemical Engineering Journal 438 (2022) 135492. https://doi.org/10.1016/j.cej.2022.135492.
[35] L.O. Animasahun, B.A. Taleatu, S.A. Adewinbi, A.A. Alayyaf, S.K. Mosa, V. Maphiri, H. Kim, A.Y. Fasasi, Pseudocapacitive Na ion storage in binder-less, carbon additive-free Nb2O5-x electrode synthesised via solvothermal-assisted electro-coating with enhanced areal capacitance and lowered impedance parameters, Journal of Physics and Chemistry of Solids 196 (2025) 112336. https://doi.org/10.1016/j.jpcs.2024.112336.
[36] N. Jabeen, A. Hussain, A. Malik, A.Q. Alkhedaide, Engineering of Nb2O5-based composite for a dual theoretical and experimental study to investigate superior electrochemical performance, Mater Sci Semicond Process 200 (2025) 109908. https://doi.org/10.1016/j.mssp.2025.109908.
[37] S.-J. Zhang, H. Chen, Y.-X. Xu, C.-S. An, K.-X. Xiang, Facile preparation of Nb2O5 microspheres and their excellent electrochemical performance in aqueous zinc-ion hybrid supercapacitors, Rare Metals 41 (2022) 3129–3141. https://doi.org/10.1007/s12598-022-02016-y.
[38] J. Liu, K. Xiang, W. Zhou, Y. Zhu, L. Xiao, W. Chen, H. Chen, Preparation of Nb2O5 with an air filter-like structure and its excellent electrochemical performance in supercapacitors, J Alloys Compd 802 (2019) 668–674. https://doi.org/10.1016/j.jallcom.2019.06.191.