Adsorption and Diffusion Energies Calculation of Sodium Ion Battery using GeTe Anode : A Density Functional Theory Study
Main Article Content
Abstract
Sodium batteries are the most potential candidates for future and green energies storage systems. However, there are problems with structural instability in the electrodes, which affect battery performance. Therefore, this study investigated the adsorption and diffusion mechanisms at the anode using a phase puckered Germanium Telluride (GeTe) monolayer structure. Density functional theory (DFT) calculations show that the Na-adsorbed hollow Te-Te structure is the most stable adsorption configuration (-1.25 eV). In the diffusion scheme, Na atoms move through the hollow Te-Te (initial state) followed by the hollow Ge-Ge (transition state), then to the hollow Te-Te (final state). The diffusion mechanism that occurs has lowest energy of 0.09 × 10-4 eV. These results suggest that the phase puckered GeTe monolayer has the potential as a high-performance sodium battery anode.
Article Details
References
[1] D. G. Ladha, “A review on density functional theory–based study on two-dimensional materials used in batteries,” Materials Today Chemistry, vol. 11, pp. 94–111, Mar. 2019, https://doi.org/10.1016/j.mtchem.2018.10.006.
[2] W. V. Sinambela, S. A. Wella, F. S. Arsyad, N. T. Hung, and A. R. T. Nugraha, “Electronic, Optical, and Thermoelectric Properties of Bulk and Monolayer Germanium Tellurides,” Crystals, vol. 11, no. 11, p. 1290, Oct. 2021, https://doi.org/10.3390/cryst11111290.
[3] J. Tang, A. D. Dysart, and V. G. Pol, “Advancement in sodium-ion rechargeable batteries,” Current Opinion in Chemical Engineering, vol. 9, pp. 34–41, Aug. 2015, https://doi.org/10.1016/j.coche.2015.08.007.
[4] K. Song, C. Liu, L. Mi, S. Chou, W. Chen, and C. Shen, “Recent Progress on the Alloy‐Based Anode for Sodium‐Ion Batteries and Potassium‐Ion Batteries,” Small, vol. 17, no. 9, p. 1903194, Mar. 2021, https://doi.org/10.1002/smll.201903194.
[5] K.-H. Nam, G.-K. Sung, J.-H. Choi, J.-S. Youn, K.-J. Jeon, and C.-M. Park, “New high-energy-density GeTe-based anodes for Li-ion batteries,” Journal of Materials Chemistry A, vol. 7, no. 7, pp. 3278–3288, 2019, https://doi.org/10.1039/C8TA12094C.
[6] T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, and M. I. Shahzad, “Prospects in anode materials for sodium ion batteries - A review,” Renewable and Sustainable Energy Reviews, vol. 119, p. 109549, Mar. 2020, https://doi.org/10.1016/j.rser.2019.109549.
[7] S. Kim, D. Seo, X. Ma, G. Ceder, and K. Kang, “Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries,” Advanced Energy Materials, vol. 2, no. 7, pp. 710–721, Jul. 2012, https://doi.org/10.1002/aenm.201200026.
[8] M. Saubanère, M. B. Yahia, S. Lebègue, and M. L. Doublet, “An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries,” Nature Communications, vol. 5, no. 1, p. 5559, Nov. 2014, https://doi.org/10.1038/ncomms6559.
[9] J. Zhang et al., “Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study,” Physical Chemistry Chemical Physics, vol. 23, no. 9, pp. 5143–5151, 2021, https://doi.org/10.1039/D0CP05879C.
[10] J. P. Pender et al., “Electrode Degradation in Lithium-Ion Batteries,” ACS Nano, vol. 14, no. 2, pp. 1243–1295, Feb. 2020, https://doi.org/10.1021/acsnano.9b04365.
[11] Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, “Metallic VS₂ Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries,” The Journal of Physical Chemistry C, vol. 117, no. 48, pp. 25409–25413, Dec. 2013, https://doi.org/10.1021/jp410969u.
[12] R. Rojaee and R. Shahbazian-Yassar, “Two-Dimensional Materials to Address the Lithium Battery Challenges,” ACS Nano, vol. 14, no. 3, pp. 2628–2658, Mar. 2020, https://doi.org/10.1021/acsnano.9b08396.
[13] W. Zhang, F. Zhang, F. Ming, and H. N. Alshareef, “Sodium-ion battery anodes: Status and future trends,” EnergyChem, vol. 1, no. 2, p. 100012, Sep. 2019, https://doi.org/10.1016/j.enchem.2019.100012.
[14] N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, “Research Development on Sodium-Ion Batteries,” Chemical Reviews, vol. 114, no. 23, pp. 11636–11682, Dec. 2014, https://doi.org/10.1021/cr500192f.
[15] L. Shao et al., “Two-Dimensional Planar BGe Monolayer as an Anode Material for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces, vol. 13, no. 25, pp. 29764–29769, Jun. 2021, https://doi.org/10.1021/acsami.1c08751.
[16] K. Chayambuka, G. Mulder, D. L. Danilov, and P. H. L. Notten, “Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed,” Advanced Energy Materials, vol. 8, no. 16, p. 1800079, Jun. 2018, https://doi.org/10.1002/aenm.201800079.
[17] R. Usiskin et al., “Fundamentals, status and promise of sodium-based batteries,” Nature Reviews Materials, vol. 6, no. 11, pp. 1020–1035, Jun. 2021, https://doi.org/10.1038/s41578-021-00324-w.
[18] E. Goikolea et al., “Na‐Ion Batteries—Approaching Old and New Challenges,” Advanced Energy Materials, vol. 10, no. 44, p. 2002055, Nov. 2020, https://doi.org/10.1002/aenm.202002055.
[19] N. S. Muhammed Hafiz, G. Singla, and P. Kumar Jha, “Next generation sodium-ion battery: A replacement of lithium,” Materials Today: Proceedings, p. S2214785322070961, Dec. 2022, https://doi.org/10.1016/j.matpr.2022.11.245.
[20] A. Hosseinian, S. Soleimani-amiri, S. Arshadi, E. Vessally, and L. Edjlali, “Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies,” Physics Letters A, vol. 381, no. 24, pp. 2010–2015, Jun. 2017, https://doi.org/10.1016/j.physleta.2017.04.022.
[21] T. J. Willis et al., “Diffusion mechanism in the sodium-ion battery material sodium cobaltate,” Scientific Reports, vol. 8, no. 1, p. 3210, Feb. 2018, https://doi.org/10.1038/s41598-018-21354-5.
[22] V. Lacivita, Y. Wang, S.-H. Bo, and G. Ceder, “Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries,” Journal of Materials Chemistry A, vol. 7, no. 14, pp. 8144–8155, 2019, https://doi.org/10.1039/C8TA10498K.
[23] F. Yu, L. Du, G. Zhang, F. Su, W. Wang, and S. Sun, “Electrode Engineering by Atomic Layer Deposition for Sodium‐Ion Batteries: From Traditional to Advanced Batteries,” Advanced Functional Materials, vol. 30, no. 9, p. 1906890, Feb. 2020, https://doi.org/10.1002/adfm.201906890.
[24] K. Li et al., “Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes,” Nature Communications, vol. 10, no. 1, p. 725, Feb. 2019, https://doi.org/10.1038/s41467-019-08506-5.
[25] N. F. M. Yusoff, N. H. Idris, M. F. Md. Din, S. R. Majid, N. A. Harun, and Md. M. Rahman, “Investigation on the Electrochemical Performances of Mn2O3 as a Potential Anode for Na-Ion Batteries,” Scientific Reports, vol. 10, no. 1, p. 9207, Jun. 2020, https://doi.org/10.1038/s41598-020-66148-w.
[26] S. C. Jung, H.-J. Kim, Y.-J. Kang, and Y.-K. Han, “Advantages of Ge anode for Na-ion batteries: Ge vs. Si and Sn,” Journal of Alloys and Compounds, vol. 688, pp. 158–163, Dec. 2016, https://doi.org/10.1016/j.jallcom.2016.07.201.
[27] P. Panigrahi, Y. Pal, T. Hussain, and R. Ahuja, “Application of germanene monolayers as efficient anchoring material to immobilize lithium polysulfides in Li-S batteries,” Applied Surface Science, vol. 558, p. 149850, Aug. 2021, https://doi.org/10.1016/j.apsusc.2021.149850.
[28] Z. Chen et al., “Metal‐Tellurium Batteries: A Rising Energy Storage System,” Small Structures, vol. 1, no. 2, p. 2000005, Nov. 2020, https://doi.org/10.1002/sstr.202000005.
[29] A. V. Kolobov, M. Krbal, P. Fons, J. Tominaga, and T. Uruga, “Distortion-triggered loss of long-range order in solids with bonding energy hierarchy,” Nature Chemistry, vol. 3, no. 4, pp. 311–316, Apr. 2011, https://doi.org/10.1038/nchem.1007.
[30] K. Jeong et al., “Evolution of crystal structures in GeTe during phase transition,” Scientific Reports, vol. 7, no. 1, p. 955, Apr. 2017, https://doi.org/10.1038/s41598-017-01154-z.
[31] J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain-engineered diffusive atomic switching in two-dimensional crystals,” Nature Communications, vol. 7, no. 1, p. 11983, Jun. 2016, https://doi.org/10.1038/ncomms11983.
[32] S. Mukherjee and G. Singh, “Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries,” ACS Applied Energy Materials, vol. 2, no. 2, pp. 932–955, Feb. 2019, https://doi.org/10.1021/acsaem.8b00843.
[33] S.-M. Zheng et al., “Alloy anodes for sodium-ion batteries,” Rare Metals, vol. 40, no. 2, pp. 272–289, Feb. 2021, https://doi.org/10.1007/s12598-020-01605-z.
[34] X. Lu et al., “Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity,” Chemistry of Materials, vol. 28, no. 4, pp. 1236–1242, Feb. 2016, https://doi.org/10.1021/acs.chemmater.6b00200.
[35] G.-K. Sung, K.-H. Nam, J.-H. Choi, and C.-M. Park, “Germanium telluride: Layered high-performance anode for sodium-ion batteries,” Electrochimica Acta, vol. 331, p. 135393, Jan. 2020, https://doi.org/10.1016/j.electacta.2019.135393.
[36] P. Giannozzi et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO,” Journal of Physics: Condensed Matter, vol. 29, no. 46, p. 465901, Nov. 2017, https://doi.org/10.1088/1361-648X/aa8f79.
[37] P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, Sep. 2009, https://doi.org/10.1088/0953-8984/21/39/395502.
[38] S. E. M. Putra, N. Amalia, and S. A. Wella, “Sodium adsorption and diffusion on monolayer germanium telluride,” 2023, p. 080004. https://doi.org/10.1063/5.0178770.
[39] M. Sacchi et al., “The dynamics of benzene on Cu(111): a combined helium spin echo and dispersion-corrected DFT study into the diffusion of physisorbed aromatics on metal surfaces,” Faraday Discussions, vol. 204, pp. 471–485, 2017, https://doi.org/10.1039/C7FD00095B.
[40] S. E. M. Putra, Y. Morikawa, and I. Hamada, “Isotope effect of methane adsorbed on fcc metal (1 1 1) surfaces,” Chemical Physics Letters, vol. 780, p. 138943, Oct. 2021, https://doi.org/10.1016/j.cplett.2021.138943.