Congo red dye adsorption using ZnAl layered double hydroxide fabricated using hydrothermal methods

Main Article Content

Anisa Fitri
Febriwan Rizki Lumbanraja
Istiara Rizqillah Hanifah
Bayu Prasetya
Rizky Aflaha
Septia Eka Marsha Putra

Abstract

Industrial dye pollutants, particularly azo dyes like Congo red, pose significant environmental and health risks due to their toxic and non-biodegradable nature. This study assesses ZnAl Layered Double Hydroxide (ZnAl LDH) as an effective adsorbent, incorporating comprehensive materials characterization and adsorption isotherm analyses. Materials characterization using SEM and XRD confirmed the structural integrity and morphological suitability of ZnAl LDH for dye adsorption. Results demonstrated that ZnAl LDH, particularly the HMTA-based variant (h-ZnAl LDH), achieved superior adsorption capacities of up to 17.8 mg/g, significantly outperforming the urea-based (u-ZnAl LDH) with capacity of 12.3 mg/g. Kinetic analysis showed that the pseudo-second-order (PSO) model provided a better fit (R2 = 0.995) than the pseudo-first-order (PFO) model, indicating that chemisorption plays a dominant role in the adsorption mechanism. The adsorption process was also best described by the Langmuir isotherm model (R2 = 0.989), indicating monolayer adsorption on a homogeneous surface, while the Freundlich model (R2 = 0.944) also provided a reasonable fit, suggesting some degree of multilayer adsorption on heterogeneous surfaces. The superior performance of HMTA-based ZnAl LDH presents a significant advancement in wastewater treatment technologies

Article Details

How to Cite
Fitri, A., Lumbanraja, F. R., Hanifah, I. R., Prasetya, B., Aflaha, R., & Putra, S. E. M. (2024). Congo red dye adsorption using ZnAl layered double hydroxide fabricated using hydrothermal methods . Greensusmater, 1(2), 44–50. https://doi.org/10.62755/greensusmater.2024.1.2.44-50
Section
Articles

References

[1] S. Kasavan, S. Yusoff, N.C. Guan, N.S.K. Zaman, M.F.R. Fakri, Global trends of textile waste research from 2005 to 2020 using bibliometric analysis, Environmental Science and Pollution Research 28 (2021) 44780–44794. https://doi.org/10.1007/s11356-021-15303-5.

[2] A. Rianjanu, K.D.P. Marpaung, C. Siburian, S.A. Muhtar, N.I. Khamidy, J. Widakdo, N. Yulianto, R. Aflaha, K. Triyana, T. Taher, Enhancement of photocatalytic activity of CeO2 nanorods through lanthanum doping (La–CeO2) for the degradation of Congo red dyes, Results in Engineering 23 (2024) 102748. https://doi.org/10.1016/j.rineng.2024.102748.

[3] P.K. Mishra, A.M.D. Izrayeel, B.K. Mahur, A. Ahuja, V.K. Rastogi, A comprehensive review on textile waste valorization techniques and their applications, Environmental Science and Pollution Research 29 (2022) 65962–65977. https://doi.org/10.1007/s11356-022-22222-6.

[4] P.O. Oladoye, M.O. Bamigboye, O.D. Ogunbiyi, M.T. Akano, Toxicity and decontamination strategies of Congo red dye, Groundw Sustain Dev 19 (2022) 100844. https://doi.org/10.1016/j.gsd.2022.100844.

[5] M. Harja, G. Buema, D. Bucur, Recent advances in removal of Congo Red dye by adsorption using an industrial waste, Sci Rep 12 (2022) 6087. https://doi.org/10.1038/s41598-022-10093-3.

[6] A. Rianjanu, A.S.P. Mustamin, E.K.A. Melati, R. Aflaha, N.I. Khamidy, M. Utami, K. Khairurrijal, K. Triyana, F.F. Abdi, H.S. Wasisto, T. Taher, Photocatalytic degradation of aqueous Congo red dye pollutants by rare-earth metal oxide (CeO2) nanorods, Colloids Surf A Physicochem Eng Asp 682 (2024) 132919. https://doi.org/10.1016/j.colsurfa.2023.132919.

[7] R.R.M. Khan, H. Qamar, A. Hameed, A. ur Rehman, M. Pervaiz, Z. Saeed, A. Adnan, A.R. Ch, Biological and Photocatalytic Degradation of Congo Red, a Diazo Sulfonated Substituted Dye: a Review, Water Air Soil Pollut 233 (2022) 468. https://doi.org/10.1007/s11270-022-05935-9.

[8] Y. Patil, S. Attarde, R. Dhake, U. Fegade, A.M.A. Alaghaz, Adsorption of Congo red dye using metal oxide nano‐adsorbents: Past, present, and future perspective, Int J Chem Kinet 55 (2023) 579–605. https://doi.org/10.1002/kin.21675.

[9] K. Manzoor, M. Batool, F. Naz, M.F. Nazar, B.H. Hameed, M.N. Zafar, A comprehensive review on application of plant-based bioadsorbents for Congo red removal, Biomass Convers Biorefin 14 (2024) 4511–4537. https://doi.org/10.1007/s13399-022-02741-5.

[10] M.F. Arif, S.A. Muhtar, C. Siburian, K.D.P. Marpaung, N. Yulianto, F.F. Abdi, T. Taher, H.S. Wasisto, A. Rianjanu, Zeolite-PAN/PVDF composite nanofiber membranes for highly efficient and selective removal of cationic dyes from wastewater, Case Studies in Chemical and Environmental Engineering 10 (2024) 100806. https://doi.org/10.1016/j.cscee.2024.100806.

[11] A. Rianjanu, K.D.P. Marpaung, E.K.A. Melati, R. Aflaha, Y.G. Wibowo, I.P. Mahendra, N. Yulianto, J. Widakdo, K. Triyana, H.S. Wasisto, T. Taher, Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb2O5@PAN/PVDF/ANO composite nanofibers, Nano Materials Science 6 (2024) 96–105. https://doi.org/10.1016/j.nanoms.2023.10.006.

[12] B.S. Marques, K. Dalmagro, K.S. Moreira, M.L.S. Oliveira, S.L. Jahn, T.A. de Lima Burgo, G.L. Dotto, Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol, J Alloys Compd 838 (2020) 155628. https://doi.org/10.1016/j.jallcom.2020.155628.

[13] S. Yadav, A. Ahmad, C. Gulati, M.M. Ghangrekar, B.K. Dubey, Zn-Al@LDH infused hydrochar as cathode catalyst for upgrading tetracycline degradation and hospital wastewater treatment: A synergy of Fenton-like and bio-electrochemical systems, J Environ Chem Eng 12 (2024) 113874. https://doi.org/10.1016/j.jece.2024.113874.

[14] J. Zheng, C. Fan, X. Li, Q. Yang, D. Wang, A. Duan, S. Pan, Tourmaline/ZnAL-LDH nanocomposite based photocatalytic system for efficient degradation of mixed pollutant wastewater, Sep Purif Technol 345 (2024) 127306. https://doi.org/10.1016/j.seppur.2024.127306.

[15] H. Boumeriame, E.S. Da Silva, A.S. Cherevan, T. Chafik, J.L. Faria, D. Eder, Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting, Journal of Energy Chemistry 64 (2022) 406–431. https://doi.org/10.1016/j.jechem.2021.04.050.

[16] T. Taher, Z. Yu, E.K.A. Melati, A. Munandar, R. Aflaha, K. Triyana, Y.G. Wibowo, K. Khairurrijal, A. Lesbani, A. Rianjanu, Enabling dual-functionality material for effective anionic and cationic dye removal by using Nb2O5/MgAl-LDH nanocomposites, Journal of Hazardous Materials Letters 5 (2024) 100103. https://doi.org/10.1016/j.hazl.2024.100103.

[17] J. Hu, C. Yu, C. Li, S. Lan, L. Zeng, M. Zhu, Thickness-dependent piezo-photo-responsive behavior of ZnAl-layered double hydroxide for wastewater remediation, Nano Energy 101 (2022) 107583. https://doi.org/10.1016/j.nanoen.2022.107583.

[18] N. Ahmad, F. Suryani Arsyad, I. Royani, P. Mega Syah Bahar Nur Siregar, T. Taher, A. Lesbani, High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution, Inorg Chem Commun 150 (2023) 110517. https://doi.org/10.1016/j.inoche.2023.110517.

[19] T. Taher, A. Munandar, N. Mawaddah, M. Syamsuddin Wisnubroto, P.M.S.B.N. Siregar, N.R. Palapa, A. Lesbani, Y.G. Wibowo, Synthesis and characterization of montmorillonite – Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal, Inorg Chem Commun 147 (2023) 110231. https://doi.org/10.1016/j.inoche.2022.110231.

[20] M.S. Pedraza-Chan, U. Salazar-Kuri, R. Sánchez-Zeferino, I.I. Ruiz-López, A. Escobedo-Morales, Emulation of evolutionary selection as the growth mechanism of supported layered double hydroxide frameworks, Appl Clay Sci 210 (2021) 106159. https://doi.org/10.1016/j.clay.2021.106159.

[21] K. Manjula Rani, P.N. Palanisamy, Synthesis and Characterization of Mesoporous, Nanostructured Zinc Aluminium Carbonate Layered Double Hydroxides (ZAC-LDHs) and Its Calcined Product (CZA-LDH), J Inorg Organomet Polym Mater 28 (2018) 1127–1135. https://doi.org/10.1007/s10904-018-0796-9.

[22] A.A.A. Ahmed, Z.A. Talib, M.Z. bin Hussein, A. Zakaria, Zn–Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties, J Solid State Chem 191 (2012) 271–278. https://doi.org/10.1016/j.jssc.2012.03.013.

[23] A. Li, H. Deng, C. Ye, Y. Jiang, Fabrication and Characterization of Novel ZnAl-Layered Double Hydroxide for the Superadsorption of Organic Contaminants from Wastewater, ACS Omega 5 (2020) 15152–15161. https://doi.org/10.1021/acsomega.0c01092.

[24] G. Starukh, O. Rozovik, O. Oranska, Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media, Nanoscale Res Lett 11 (2016) 228. https://doi.org/10.1186/s11671-016-1402-0.

[25] L. Liu, M. Cheng, Z. Yang, Improved performance of flower-like ZnAl LDH growing on carbon nanotubes used in zinc–nickel secondary battery, Electrochim Acta 277 (2018) 67–76. https://doi.org/10.1016/j.electacta.2018.04.201.

[26] J. Hu, M. Gan, L. Ma, J. Zhang, S. Xie, F. Xu, J.Z.X. Shen, H. Yin, Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites, Appl Surf Sci 328 (2015) 325–334. https://doi.org/10.1016/j.apsusc.2014.12.042.

[27] D. Téllez-Flores, M. Sánchez-Cantú, F. Tzompantzi, A.G. Romero-Villegas, C. Tzompantzi-Flores, J.E. Carrera-Crespo, R. Pérez-Hernández, E. Rubio- Rosas, Influence of the Zn/Al molar ratio over the photocatalytic hydrogen production by ZnS/ZnAl-LDH composites, Int J Hydrogen Energy (2024). https://doi.org/10.1016/j.ijhydene.2024.01.069.

[28] C. Cai, R. Wang, S. Liu, X. Yan, L. Zhang, M. Wang, Q. Tong, T. Jiao, Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities, Colloids Surf A Physicochem Eng Asp 589 (2020) 124468. https://doi.org/10.1016/j.colsurfa.2020.124468.

[29] Q. Wang, C. Luo, Z. Lai, S. Chen, D. He, J. Mu, Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism, Bioresour Technol 357 (2022) 127363. https://doi.org/10.1016/j.biortech.2022.127363.

[30] Q. Hu, S. Pang, D. Wang, In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review, Separation & Purification Reviews 51 (2022) 281–299. https://doi.org/10.1080/15422119.2021.1922444.

[31] M. Verma, I. Tyagi, V. Kumar, S. Goel, D. Vaya, H. Kim, Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: Kinetics, isotherm, and reusability, J Environ Chem Eng 9 (2021) 106045. https://doi.org/10.1016/j.jece.2021.106045.

[32] R. Ezzati, S. Ezzati, M. Azizi, Exact solution of the Langmuir rate equation: New Insights into pseudo-first-order and pseudo-second-order kinetics models for adsorption, Vacuum 220 (2024) 112790. https://doi.org/10.1016/j.vacuum.2023.112790.

[33] M. Saxena, N. Sharma, R. Saxena, Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes, Surfaces and Interfaces 21 (2020) 100639. https://doi.org/10.1016/j.surfin.2020.100639.

[34] S. Debnath, R. Das, Strong adsorption of CV dye by Ni ferrite nanoparticles for waste water purification: Fits well the pseudo second order kinetic and Freundlich isotherm model, Ceram Int 49 (2023) 16199–16215. https://doi.org/10.1016/j.ceramint.2023.01.218.