Investigating the influence of polyacrylonitrile nanofiber thickness on particulate matter filtration performance from cigarette smoke

Main Article Content

Dina Wardiningsih
Rizky Aflaha
Chlara Naren Maharani
Kuwat Triyana
Ahmad Kusumaatmaja

Abstract

This study successfully fabricated polyacrylonitrile (PAN) nanofiber in various thicknesses as particulate matter (PM) filtration membranes using the electrospinning method. The PM source used was derived from cigarette smoke. Scanning electron microscopy (SEM) images and Fourier-transform infrared (FTIR) spectra are provided in the manuscript to observe the morphology and chemical composition of the fabricated nanofiber membrane. The thickness of the nanofiber was controlled based on the volume of the polymer solution, which was 4 mL, 6 mL, and 8 mL, and had a thickness of (52 ± 2) µm, (176 ± 27) µm, and (479 ± 38) µm, respectively (denoted as NF-4, NF-6, and NF-8 membranes). The results showed that the nanofiber membrane performed well against PM0.3, PM1, and PM2.5, with efficiency above 95.7%. Furthermore, it was observed that increasing the thickness of the nanofiber resulted in higher filtration efficiency. This trend is evident in the NF-8 membrane, which exhibited an efficiency of (97.9 ± 0.3)%, compared to only (95.7 ± 0.2)% for the NF-4 membrane against PM0.3. However, the pressure drop is also higher ((0.03 ± 0.005) kPa), which causes a trade-off in the quality factor (QF) of fabricated nanofiber performance as a PM filtration membrane.

Article Details

How to Cite
Wardiningsih , D., Aflaha , R., Maharani , C. N., Triyana , K., & Kusumaatmaja, A. (2024). Investigating the influence of polyacrylonitrile nanofiber thickness on particulate matter filtration performance from cigarette smoke. Greensusmater, 1(1). https://doi.org/10.62755/greensusmater.2024.1.1.32-38
Section
Articles

References

[1] M. Kampa, E. Castanas, Human health effects of air pollution, Environmental Pollution 151 (2) (2008) 362–367. https://doi.org/10.1016/j.envpol.2007.06.012.

[2] O. Raaschou-Nielsen, Z. J. Andersen, R. Beelen, E. Samoli, M. Stafoggia, G. Weinmayr, B. Hoffmann, P. Fischer, M. J. Nieuwenhuijsen, B. Brunekreef, W. W. Xun, K. Katsouyanni, K. Dimakopoulou, J. Sommar, B. Forsberg, L. Modig, A. Oudin, B. Oftedal, P. E. Schwarze, P. Nafstad, U. De Faire, N. L. Pedersen, C.-G. Östenson, L. Fratiglioni, J. Penell, M. Korek, G. Pershagen, K. T. Eriksen, M. Sørensen, A. Tjønneland, T. Ellermann, M. Eeftens, P. H. Peeters, K. Meliefste, M. Wang, B. Bueno-de Mesquita, T. J. Key, K. De Hoogh, H. Concin, G. Nagel, A. Vilier, S. Grioni, V. Krogh, M.-Y. Tsai, F. Ricceri, C. Sacerdote, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni, F. Forastiere, I. Tamayo, P. Amiano, M. Dorronsoro, A. Trichopoulou, C. Bamia, P. Vineis, G. Hoek, Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE), The Lancet Oncology 14 (9) (2013) 813–822. https://doi.org/10.1016/S1470-2045(13)70279-1.

[3] WHO, Ambient (outdoor) air pollution. URL https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

[4] R. B. Hamanaka, G. M. Mutlu, Particulate Matter Air Pollution: Effects on the Cardiovascular System, Frontiers in Endocrinology 9 (2018) 680. https://doi.org/10.3389/fendo.2018.00680.

[5] K.-H. Kim, E. Kabir, S. Kabir, A review on the human health impact of airborne particulate matter, Environment International 74 (2015) 136–143. https://doi.org/10.1016/j.envint.2014.10.005.

[6] N. N. Naing, H. K. Lee, Microextraction and analysis of contaminants adsorbed on atmospheric fine particulate matter: A review, Journal of Chromatography A 1627 (2020) 461433. https://doi.org/10.1016/j.chroma.2020.461433.

[7] D. Wenger, A. C. Gerecke, N. V. Heeb, C. Hueglin, C. Seiler, R. Haag, H. Naegeli, R. Zenobi, Aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter from an urban and a rural site in Switzerland, Atmospheric Environment 43 (22-23) (2009) 3556–3562. https://doi.org/10.1016/j.atmosenv.2009.04.012.

[8] Z. Zong, X. Wang, C. Tian, Y. Chen, L. Qu, L. Ji, G. Zhi, J. Li, G. Zhang, Source apportionment of PM<sub>2.5</sub> at a regional background site in NorthChina using PMF linked with radiocarbon analysis: insight into thecontribution of biomass burning, Atmospheric Chemistry and Physics 16 (17) (2016) 11249–11265. https://doi.org/10.5194/acp-16-11249-2016.

[9] J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, S.-C. Hsu, PM<sub>2.5</sub> pollution in a megacity of southwest China: source apportionment and implication, Atmospheric Chemistry and Physics 14 (16) (2014) 8679–8699. https://doi.org/10.5194/acp-14-8679-2014.

[10] Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng, Z. L. Wang, Washable Multilayer Triboelectric Air Filter for Efficient Particulate Matter PM 2.5 Removal, Advanced Functional Materials 28 (15) (2018) 1706680. https://doi.org/10.1002/adfm.201706680.

[11] J. G. Watson, J. C. Chow, J. E. Houck, PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995, Chemosphere 43 (8) (2001) 1141–1151. https://doi.org/10.1016/S0045-6535(00)00171-5.

[12] T. D. Nelin, A. M. Joseph, M. W. Gorr, L. E. Wold, Direct and indirect effects of particulate matter on the cardiovascular system, Toxicology Letters 208 (3) (2012) 293–299. https://doi.org/10.1016/j.toxlet.2011.11.008.

[13] R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel, J. D. Kaufman, Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association, Circulation 121 (21) (2010) 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1.

[14] M. Odabasi, B. Cetin, A. Bayram, Persistent Organic Pollutants (POPs) on Fine and Coarse Atmospheric Particles Measured at Two (Urban and Industrial) Sites, Aerosol and Air Quality Research 15 (5) (2015) 1894–1905. https://doi.org/10.4209/aaqr.2015.02.0118.

[15] T. Xue, T. Zhu, Y. Zheng, Q. Zhang, Declines in mental health associated with air pollution and temperature variability in China, Nature Communications 10 (1) (2019) 2165. https://doi.org/10.1038/s41467-019-10196-y.

[16] T. Bourdrel, I. Annesi-Maesano, B. Alahmad, C. N. Maesano, M.-A. Bind, The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro , animal, and human studies, European Respiratory Review 30 (159) (2021) 200242. https://doi.org/10.1183/16000617.0242-2020.

[17] W. Essa, S. Yasin, I. Saeed, G. Ali, Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review, Membranes 11 (4) (2021) 250. https://doi.org/10.3390/membranes11040250.

[18] S. Zhang, N. Tang, L. Cao, X. Yin, J. Yu, B. Ding, Highly Integrated Polysulfone/Polyacrylonitrile/Polyamide-6 Air Filter for Multilevel Physical Sieving Airborne Particles, ACS Applied Materials & Interfaces 8 (42) (2016) 29062–29072. https://doi.org/10.1021/acsami.6b10094.

[19] Y. Liao, C.-H. Loh, M. Tian, R. Wang, A. G. Fane, Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications, Progress in Polymer Science 77 (2018) 69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003.

[20] C.-W. Lou, M.-C. Lin, C.-H. Huang, M.-F. Lai, B.-C. Shiu, J.-H. Lin, Preparation of Needleless Electrospinning Polyvinyl Alcohol/Water-Soluble Chitosan Nanofibrous Membranes: Antibacterial Property and Filter Efficiency, Polymers 14 (5) (2022) 1054. https://doi.org/10.3390/polym14051054.

[21] B. Sun, Y. Long, H. Zhang, M. Li, J. Duvail, X. Jiang, H. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science 39 (5) (2014) 862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002.

[22] W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate, Separation and Purification Technology 71 (1) (2010) 30–37. https://doi.org/10.1016/j.seppur.2009.10.017.

[23] A. Rianjanu, K. D. P. Marpaung, E. K. A. Melati, R. Aflaha, Y. G. Wibowo, I. P. Mahendra, N. Yulianto, J. Widakdo, K. Triyana, H. S. Wasisto, T. Taher, Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb2O5@PAN/PVDF/ANO composite nanofibers, Nano Materials Science (2023) S2589965123000673https://doi.org/10.1016/j.nanoms.2023.10.006.

[24] R. Roche, F. Yalcinkaya, Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications, Nanomaterials 8 (10) (2018) 771. https://doi.org/10.3390/nano8100771.

[25] J. Deitzel, Controlled deposition of electrospun poly(ethylene oxide) fibers, Polymer 42 (19) (2001) 8163–8170. https://doi.org/10.1016/S0032-3861(01)00336-6.

[26] R. Aflaha, H. Afiyanti, Z. N. Azizah, H. Khoirudin, A. Rianjanu, A. Kusumaatmaja, R. Roto, K. Triyana, Improving ammonia sensing performance of quartz crystal microbalance (QCM) coated with nanofibers and polyaniline (PANi) overlay, Biosensors and Bioelectronics: X 13 (2023) 100300. https://doi.org/10.1016/j.biosx.2022.100300.

[27] R. Aflaha, N. L. I. Sari, L. Katriani, A. H. As’ari, A. Kusumaatmaja, A. Rianjanu, R. Roto, H. S. Wasisto, K. Triyana, Maltodextrin-overlaid polyvinyl acetate nanofibers for highly sensitive and selective room-temperature ammonia sensors, Microchemical Journal 193 (2023) 109237. https://doi.org/10.1016/j.microc.2023.109237.

[28] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications, Chemical Reviews 119 (8) (2019) 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593.

[29] C. Lyu, P. Zhao, J. Xie, S. Dong, J. Liu, C. Rao, J. Fu, Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review, Nanomaterials 11 (6) (2021) 1501. https://doi.org/10.3390/nano11061501.

[30] R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal, Journal of Membrane Science 289 (1-2) (2007) 210–219. https://doi.org/10.1016/j.memsci.2006.11.056.

[31] V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy & Environmental Science 1 (2) (2008) 205. https://doi.org/10.1039/b809074m.

[32] R. Aflaha, L. Katriani, A. H. As’ari, N. L. I. Sari, A. Kusumaatmaja, A. Rianjanu, R. Roto, K. Triyana, Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin, MRS Communications 13 (4) (2023) 664–672. https://doi.org/10.1557/s43579-023-00409-3.

[33] A. Rianjanu, M. Aulya, M. A. A. P. Rayhan, R. Aflaha, S. Maulana, T. Taher, W. S. Sipahutar, M. I. Maulana, N. Yulianto, K. Triyana, H. S. Wasisto, Impact of hydrophilic bamboo cellulose functionalization on electrospun polyacrylonitrile nanofiber-based humidity sensors, MRS Communications 13 (3) (2023) 514–519. https://doi.org/10.1557/s43579-023-00367-w.

[34] Rianjanu, R. Aflaha, N. I. Khamidy, M. Djamal, K. Triyana, H. S. Wasisto, Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats, Materials Advances 2 (11) (2021) 3705–3714. https://doi.org/10.1039/D1MA00152C.

[35] S. A. Sofa, R. Roto, R. Aflaha, T. A. Natsir, N. A. Humairah, A. Kusumaatmaja, K. Triyana, R. Gupta, Formaldehyde gas sensors based on a quartz crystal microbalance modified with aniline-doped polyvinyl acetate nanofibers, The Analyst 149 (4) (2024) 1262–1270. https://doi.org/10.1039/D3AN01856C.

[36] H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang, C. J. B. White, L. Zhu, Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption, Desalination 256 (1-3) (2010) 141–147. https://doi.org/10.1016/j.desal.2010.01.026.

[37] M. Chen, C. Wang, W. Fang, J. Wang, W. Zhang, G. Jin, G. Diao, Electrospinning of Calixarene-Functionalized Polyacrylonitrile Nanofiber Membranes and Application as an Adsorbent and Catalyst Support, Langmuir 29 (38) (2013) 11858–11867. https://doi.org/10.1021/la4017799.

[38] J. Jiang, L. Zhu, L. Zhu, H. Zhang, B. Zhu, Y. Xu, Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly( N -vinyl pyrrolidone), ACS Applied Materials & Interfaces 5 (24) (2013) 12895–12904. https://doi.org/10.1021/am403405c.

[39] A. A. Taha, J. Qiao, F. Li, B. Zhang, Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr3+ from aqueous solution, Journal of Environmental Sciences 24 (4) (2012) 610–616. https://doi.org/10.1016/S1001-0742(11)60806-1.

[40] N. I. Khamidy, R. Aflaha, E. Nurfani, M. Djamal, K. Triyana, H. S. Wasisto, A. Rianjanu, Influence of dopant concentration on the ammonia sensing performance of citric acid-doped polyvinyl acetate nanofibers, Analytical Methods 14 (47) (2022) 4956–4966. https://doi.org/10.1039/D2AY01382G.

[41] Işik, G. Arabacı, Y. Işpirli Doğaç, I. Deveci, M. Teke, Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability, Materials Science and Engineering: C 99 (2019) 1226–1235. https://doi.org/10.1016/j.msec.2019.02.031.

[42] W. Wang, Y. Lu, M. Luo, Q. Zhao, Y. Wang, Q. Liu, M. Li, D. Wang, Zwitterionic‐polymer‐functionalized poly(vinyl alcohol‐ co ‐ethylene) nanofiber membrane for resistance to the adsorption of bacteria and protein, Journal of Applied Polymer Science 133 (44) (2016) app.44169. https://doi.org/10.1002/app.44169.

[43] H. Khoirudin, R. Aflaha, E. R. Arsetiyani, A. D. Nugraheni, D. K. Nurputra, K. Triyana, A. Kusumaatmaja, Influence of the SMN antibody on quartz crystal microbalance with dissipation (QCM-D) surface as an SMN protein biosensor, MRS Communications 14 (1) (2023) 34–40. https://doi.org/10.1557/s43579-023-00492-6.

[44] X. Li, C. Wang, Y. Yang, X. Wang, M. Zhu, B. S. Hsiao, Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane Distillation, ACS Applied Materials & Interfaces 6 (4) (2014) 2423–2430. https://doi.org/10.1021/am4048128.

[45] M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong, S. S. Yoon, Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil, ACS Applied Materials & Interfaces 5 (21) (2013) 10597–10604. https://doi.org/10.1021/am404156k.

[46] H. Zhang, Q. Zhen, J.-Q. Cui, H.-W. Sun, R.-T. Liu, Y.-F. Zhang, Y. Liu, Binary Structured Polypropylene/Polyethylene Glycol Micro-nanofibrous Membranes with Enhanced Water and Air Permeability, Fibers and Polymers 22 (1) (2021) 69–76. https://doi.org/10.1007/s12221-021-9077-2.

[47] S. Cho, M. Kim, J. S. Lee, J. Jang, Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor, ACS Applied Materials & Interfaces 7 (40) (2015) 22301–22314. https://doi.org/10.1021/acsami.5b05467.

[48] J. J. Huang, Y. Tian, R. Wang, M. Tian, Y. Liao, Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop, Separation and Purification Technology 237 (2020) 116377. https://doi.org/10.1016/j.seppur.2019.116377.

[49] M. Hashmi, S. Ullah, I. S. Kim, Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications, Current Research in Biotechnology 1 (2019) 1–10. https://doi.org/10.1016/j.crbiot.2019.07.001.

[50] Y. Kang, J. Chen, S. Feng, H. Zhou, F. Zhou, Z.-X. Low, Z. Zhong, W. Xing, Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane, Journal of Membrane Science 662 (2022) 120985. https://doi.org/10.1016/j.memsci.2022.120985.

[51] X. Cheng, L. Zhao, Z. Zhang, C. Deng, C. Li, Y. Du, J. Shi, M. Zhu, Highly efficient, low-resistant, well-ordered PAN nanofiber membranes for air filtration, Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (2022) 130302. https://doi.org/10.1016/j.colsurfa.2022.130302.

[52] M. Li, Y. Feng, K. Wang, W. F. Yong, L. Yu, T.-S. Chung, Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM 2.5 with Repetitive Usage Capability, Environmental Science & Technology 51 (17) (2017) 10041–10049. https://doi.org/10.1021/acs.est.7b01494.

[53] H. Souzandeh, L. Scudiero, Y. Wang, W.-H. Zhong, A Disposable Multi-Functional Air Filter: Paper Towel/Protein Nanofibers with Gradient Porous Structures for Capturing Pollutants of Broad Species and Sizes, ACS Sustainable Chemistry & Engineering 5 (7) (2017) 6209–6217. https://doi.org/10.1021/acssuschemeng.7b01160.

[54] Kim, Y. Jang, J. Kim, S. K. Kang, J. Song, D.-W. Kim, S. Jang, I. Nam, P. S. Lee, S.-H. Jeong, High-performance electrospun particulate matter (PM) filters embedded with self-polarizable tetragonal BaTiO3 nanoparticles, Chemical Engineering Journal 450 (2022) 138340. https://doi.org/10.1016/j.cej.2022.138340.

[55] Y. Li, X. Yin, J. Yu, B. Ding, Electrospun nanofibers for high-performance air filtration, Composites Communications 15 (2019) 6–19. https://doi.org/10.1016/j.coco.2019.06.003.

[56] R. Givehchi, Q. Li, Z. Tan, Quality factors of PVA nanofibrous filters for airborne particles in the size range of 10–125 nm, Fuel 181 (2016) 1273–1280. https://doi.org/10.1016/j.fuel.2015.12.010.

[57] F. Liu, M. Li, W. Shao, W. Yue, B. Hu, K. Weng, Y. Chen, X. Liao, J. He, Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance, Journal of Colloid and Interface Science 557 (2019) 318–327. https://doi.org/10.1016/j.jcis.2019.08.099.

[58] Z.-X. Huang, X. Liu, X. Zhang, S.-C. Wong, G. G. Chase, J.-P. Qu, A. Baji, Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment, Polymer 131 (2017) 143–150. https://doi.org/10.1016/j.polymer.2017.10.033.

[59] S. N. Hidayat, T. Julian, A. Rianjanu, A. Kusumaatmadja, K. Triyana, Roto, Quartz crystal microbalance coated by PAN nanofibers and PEDOT:PSS for humidity sensor, in: 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), IEEE, Surabaya, 2017, pp. 119–123. https://doi.org/10.1109/ISSIMM.2017.8124274. URL http://ieeexplore.ieee.org/document/8124274/

[60] A. Rianjanu, R. Roto, T. Julian, S. Hidayat, A. Kusumaatmaja, E. Suyono, K. Triyana, Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole, Sensors 18 (4) (2018) 1150. https://doi.org/10.3390/s18041150.

[61] S. Kuwabara, The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers, Journal of the Physical Society of Japan 14 (4) (1959) 527–532. https://doi.org/10.1143/JPSJ.14.527.

[62] F. Russo, R. Castro-Muñoz, S. Santoro, F. Galiano, A. Figoli, A review on electrospun membranes for potential air filtration application, Journal of Environmental Chemical Engineering 10 (5) (2022) 108452. https://doi.org/10.1016/j.jece.2022.108452.

[63] S. Hosseini, H. V. Tafreshi, 3-D simulation of particle filtration in electrospun nanofibrous filters, Powder Technology 201 (2) (2010) 153–160. https://doi.org/10.1016/j.powtec.2010.03.020.

[64] Cipriani, M. Zanetti, P. Bracco, V. Brunella, M. Luda, L. Costa, Crosslinking and carbonization processes in PAN films and nanofibers, Polymer Degradation and Stability 123 (2016) 178–188. https://doi.org/10.1016/j.polymdegradstab.2015.11.008.