Thermal annealing tailors crystallinity and magnetism in silica coated Ni-Zn ferrite (SiO2@NiZnFe2O4) nanoparticles

Main Article Content

Januar Widakdo

Abstract


Ni0.5Zn0.5Fe2O4 nanoparticles were synthesized using a co-precipitation method followed by annealing at different temperatures to investigate their structural, morphological, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase spinel structure, with increased crystallinity and grain growth observed at higher annealing temperatures. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further revealed a transition from small, aggregated nanoparticles to well-defined crystalline grains. Magnetic hysteresis measurements demonstrated a significant enhancement in saturation magnetization (Ms) and coercivity (Hc) with increasing temperature, reaching up to 55.15 emu/g and 253.23 Oe, respectively, at 800 °C. These improvements are attributed to reduced surface spin disorder and increased magnetic domain alignment due to grain growth. The results underscore the importance of annealing temperature in tailoring the magnetic behavior and structural properties of Ni–Zn ferrite nanoparticles for potential applications in magnetic and electronic devices.


Article Details

How to Cite
Widakdo, J. (2025). Thermal annealing tailors crystallinity and magnetism in silica coated Ni-Zn ferrite (SiO2@NiZnFe2O4) nanoparticles. Greensusmater, 2(2), 30–35. https://doi.org/10.62755/greensusmater.2025.2.2.30-35
Section
Articles

References

[1] J. Mohapatra, P. Joshi, J. Ping Liu, Low-dimensional hard magnetic materials, Prog Mater Sci 138 (2023) 101143. https://doi.org/10.1016/j.pmatsci.2023.101143.

[2] M. Hossain, B. Qin, B. Li, X. Duan, Synthesis, characterization, properties and applications of two-dimensional magnetic materials, Nano Today 42 (2022) 101338. https://doi.org/10.1016/j.nantod.2021.101338.

[3] J. He, H. Yuan, M. Nie, H. Guo, H. Yu, Z. Liu, R. Sun, Soft magnetic materials for power inductors: State of art and future development, Materials Today Electronics 6 (2023) 100066. https://doi.org/10.1016/j.mtelec.2023.100066.

[4] X. Wei, M.-L. Jin, H. Yang, X.-X. Wang, Y.-Z. Long, Z. Chen, Advances in 3D printing of magnetic materials: Fabrication, properties, and their applications, Journal of Advanced Ceramics 11 (2022) 665–701. https://doi.org/10.1007/s40145-022-0567-5.

[5] C. Zhang, X. Li, L. Jiang, D. Tang, H. Xu, P. Zhao, J. Fu, Q. Zhou, Y. Chen, 3D Printing of Functional Magnetic Materials: From Design to Applications, Adv Funct Mater 31 (2021). https://doi.org/10.1002/adfm.202102777.

[6] E. Elahi, M.A. Khan, M. Suleman, A. Dahshan, S. Rehman, H.M. Waseem Khalil, M.A. Rehman, A.M. Hassan, G. Koyyada, J.H. Kim, M.F. Khan, Recent innovations in 2D magnetic materials and their potential applications in the modern era, Materials Today 72 (2024) 183–206. https://doi.org/10.1016/j.mattod.2023.11.008.

[7] E. Puspitasari, M. Ginting, R. Ramlan, Preparation and Characterization of Fe2O3 from Iron Sand of the Coastal Sea of Cidaun Beach-South Cianjur (Indonesia) using the Co-precipitation Method, Science and Technology Indonesia 8 (2023) 594–598. https://doi.org/10.26554/sti.2023.8.4.594-598.

[8] S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles, Adv Colloid Interface Sci 281 (2020) 102165. https://doi.org/10.1016/j.cis.2020.102165.

[9] S.K. Sushant, N.J. Choudhari, S. Patil, M.K. Rendale, S.N. Mathad, A.T. Pathan, Development of M–NiFe2O4 (Co, Mg, Cu, Zn, and Rare Earth Materials) and the Recent Major Applications, International Journal of Self-Propagating High-Temperature Synthesis 32 (2023) 61–116. https://doi.org/10.3103/S1061386223020061.

[10] K. Bouferrache, Z. Charifi, H. Baaziz, A.M. Alsaad, A. Telfah, Electronic structure, magnetic and optic properties of spinel compound NiFe 2 O 4 , Semicond Sci Technol 35 (2020) 095013. https://doi.org/10.1088/1361-6641/ab9845.

[11] F. Tabesh, S. Mallakpour, C.M. Hussain, Recent advances in magnetic semiconductor ZnFe2O4 nanoceramics: History, properties, synthesis, characterization, and applications, J Solid State Chem 322 (2023) 123940. https://doi.org/10.1016/j.jssc.2023.123940.

[12] S.M. Hoque, Md.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications, Mater Lett 162 (2016) 60–63. https://doi.org/10.1016/j.matlet.2015.09.066.

[13] T.D.H. Nguyen, M.-F. Lin, W.-D. Hsu, Investigations on electronic, magnetic, and optical properties of MnFe2O4 through first-principles calculations, Comput Mater Sci 235 (2024) 112831. https://doi.org/10.1016/j.commatsci.2024.112831.

[14] F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M. Shahedi Asl, Magnetic CoFe2O4 nanoparticles doped with metal ions: A review, Ceram Int 46 (2020) 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202.

[15] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv Colloid Interface Sci 265 (2019) 29–44. https://doi.org/10.1016/j.cis.2019.01.003.

[16] J. Widakdo, N. Istikhomah, A. Rifianto, E. Suharyadi, T. Kato, S. Iwata, Crystal structures and magnetic properties of silica and polyethylene glycol (PEG-4000) — Encapsulated Zn0.5]]>Ni<inf>0.5</inf>Fe<inf>2</inf>O4 magnetic nanoparticles, in: 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2017: pp. 149–150. https://doi.org/10.1109/NMDC.2017.8350535.

[17] N. Istikhomah, J. Widakdo, A. Rifianto, E. Suharyadi, T. Kato, S. Iwata, Effect of Zn concentration on crystal structure and magnetic properties of Znx]]>Ni<inf>1−x</inf>Fe<inf>2</inf>O4 nanoparticles fabricated by co-precipitation method, in: 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2017: pp. 151–152. https://doi.org/10.1109/NMDC.2017.8350536.

[18] A. Lakshmanan, P. Surendran, S. Sakthy Priya, K. Balakrishnan, P. Geetha, P. Rameshkumar, T.A. Hegde, G. Vinitha, K. Kannan, Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method, J Photochem Photobiol A Chem 402 (2020) 112794. https://doi.org/10.1016/j.jphotochem.2020.112794.

[19] M. Xia, Y. zhang, J. Xiao, P. Zhao, Z. Hou, F. Du, D. Chen, S. Dou, Magnetic field induced synthesis of (Ni, Zn)Fe2O4 spinel nanorod for enhanced alkaline hydrogen evolution reaction, Progress in Natural Science: Materials International 33 (2023) 172–177. https://doi.org/10.1016/j.pnsc.2023.04.001.

[20] K. V. Chandekar, S.P. Yadav, Comprehensive study of MFe2O4 (M=Co, Ni, Zn) nanostructures prepared by co-precipitation route, J Alloys Compd 960 (2023) 170838. https://doi.org/10.1016/j.jallcom.2023.170838.

[21] M.M. Rashad, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba, A.E. Saba, Structure and magnetic properties of NixZn1−xFe2O4 nanoparticles prepared through co-precipitation method, J Alloys Compd 486 (2009) 759–767. https://doi.org/10.1016/j.jallcom.2009.07.051.

[22] Y. Yi, Y. Peng, C. Xia, H. Deng, Y. Xiang, Q. Xia, Effects of heat treatment on structure and magnetic properties of Fe/(NiZn)Fe2O4 soft magnetic composite powders prepared using a co-precipitation method, J Alloys Compd 728 (2017) 571–577. https://doi.org/10.1016/j.jallcom.2017.08.291.

[23] S. Alomairy, M.S. Al-Buriahi, E.A. Abdel Wahab, C. Sriwunkum, KhS. Shaaban, Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system, Ceram Int 47 (2021) 17322–17330. https://doi.org/10.1016/j.ceramint.2021.03.045.

[24] P. More, S. Kadam, P. Lokhande, G. Jangam, S. Patange, D. Satpute, Effect of sintering temperature on the structural, morphological, and the magnetic properties of Ni0.25Cu0.55 Zn0.20 Fe2O4 nano ferrite, J Magn Magn Mater 586 (2023) 171192. https://doi.org/10.1016/j.jmmm.2023.171192.

[25] S. Kumar, P. Pandey, K. Chattopadhyay, Influence of interfacial and strain energies on γ′ coarsening kinetics in complex concentrated alloys, Materialia (Oxf) 33 (2024) 102018. https://doi.org/10.1016/j.mtla.2024.102018.

[26] F. Wakai, K.A. Brakke, Mechanics of sintering for coupled grain boundary and surface diffusion, Acta Mater 59 (2011) 5379–5387. https://doi.org/10.1016/j.actamat.2011.05.006.

[27] Y. Dong, D. Zhang, D. Li, H. Jia, W. Qin, Control of Ostwald ripening, Sci China Mater 66 (2023) 1249–1255. https://doi.org/10.1007/s40843-022-2233-3.

[28] J. Gubicza, Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials, Adv Eng Mater 22 (2020). https://doi.org/10.1002/adem.201900507.

[29] A. D Souza, P.D. Babu, S. Rayaprol, M.S. Murari, L.D. Mendonca, M. Daivajna, Size control on the magnetism of La0.7Sr0.3MnO3, J Alloys Compd 797 (2019) 874–882. https://doi.org/10.1016/j.jallcom.2019.05.004.

[30] N. Maji, H.S. Dosanjh, Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review, Magnetochemistry 9 (2023) 156. https://doi.org/10.3390/magnetochemistry9060156.

[31] M.F. Elmahaishi, R.S. Azis, I. Ismail, F.D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance, Journal of Materials Research and Technology 20 (2022) 2188–2220. https://doi.org/10.1016/j.jmrt.2022.07.140.

[32] Y. Ha, S. Ko, I. Kim, Y. Huang, K. Mohanty, C. Huh, J.A. Maynard, Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays, ACS Appl Nano Mater 1 (2018) 512–521. https://doi.org/10.1021/acsanm.7b00025.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)